CONTENTS

CAN FUNDAMENTAL

PRECAUTION .. 5

PRECAUTIONS .. 5
Precautions for Trouble Diagnosis ... 5
Precautions for Harness Repair ... 5

SYSTEM DESCRIPTION .. 6

CAN COMMUNICATION SYSTEM 6
System Description .. 6
System Diagram ... 6
CAN Communication Control Circuit 7

DIAG ON CAN ... 8
Description .. 8
System Diagram ... 8

TROUBLE DIAGNOSIS ... 9
Condition of Error Detection ... 9
Symptom When Error Occurs in CAN Communication System .. 9
CAN Diagnosis with CONSULT ... 12
Self-Diagnosis ... 12
CAN Diagnostic Support Monitor 12
How to Use CAN Communication Signal Chart 14

BASIC INSPECTION ... 15

DIAGNOSIS AND REPAIR WORKFLOW 15
Trouble Diagnosis Flow Chart ... 15
Trouble Diagnosis Procedure ... 15

HOW TO USE THIS MANUAL 20

HOW TO USE THIS SECTION 20
Caution ... 20
Abbreviation List .. 20

PRECAUTION .. 21

PRECAUTIONS .. 21
Precaution for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT BELT PRE-TENSIONER” .. 21
Precautions for Trouble Diagnosis 21
Precautions for Harness Repair 21

BASIC INSPECTION ... 23

DIAGNOSIS AND REPAIR WORKFLOW 23
Interview Sheet .. 23

SYSTEM DESCRIPTION .. 24

CAN COMMUNICATION SYSTEM 24
CAN System Specification Chart 24
CAN Communication Signal Chart 24

WIRING DIAGRAM ... 28

CAN SYSTEM .. 28
Wiring Diagram .. 28

DTC/CIRCUIT DIAGNOSIS .. 36

CAN COMMUNICATION SYSTEM 36
Component Parts Location ... 36

MALFUNCTION AREA CHART .. 37
Main Line .. 37
Branch Line .. 37
Short Circuit .. 37

MAIN LINE BETWEEN ADP AND DLC CIRCUIT 38
Diagnosis Procedure ... 38

MAIN LINE BETWEEN DLC AND HVAC CIRCUIT 39
Diagnosis Procedure ... 39

MAIN LINE BETWEEN HVAC AND ABS CIRCUIT 40
<table>
<thead>
<tr>
<th>CAN SYSTEM (TYPE 1)</th>
<th>CAN SYSTEM (TYPE 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT</td>
<td>ECM BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>41</td>
<td>60</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT</td>
<td>BCM BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>42</td>
<td>61</td>
</tr>
<tr>
<td>ECM BRANCH LINE CIRCUIT</td>
<td>DLC BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>43</td>
<td>62</td>
</tr>
<tr>
<td>ADP BRANCH LINE CIRCUIT</td>
<td>M&A BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>44</td>
<td>63</td>
</tr>
<tr>
<td>BCM BRANCH LINE CIRCUIT</td>
<td>HVAC BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>DLC BRANCH LINE CIRCUIT</td>
<td>STRG BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>46</td>
<td>65</td>
</tr>
<tr>
<td>M&A BRANCH LINE CIRCUIT</td>
<td>A-BAG BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>47</td>
<td>66</td>
</tr>
<tr>
<td>AV BRANCH LINE CIRCUIT</td>
<td>ABS BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>48</td>
<td>67</td>
</tr>
<tr>
<td>HVAC BRANCH LINE CIRCUIT</td>
<td>TCM BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>49</td>
<td>68</td>
</tr>
<tr>
<td>STRG BRANCH LINE CIRCUIT</td>
<td>IPDM-E BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>50</td>
<td>69</td>
</tr>
<tr>
<td>A-BAG BRANCH LINE CIRCUIT</td>
<td>CAN COMMUNICATION CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>51</td>
<td>70</td>
</tr>
<tr>
<td>ABS BRANCH LINE CIRCUIT</td>
<td>DTC/CIRCUIT DIAGNOSIS</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>52</td>
<td>72</td>
</tr>
<tr>
<td>TCM BRANCH LINE CIRCUIT</td>
<td>MAIN LINE BETWEEN ADP AND DLC CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>53</td>
<td>72</td>
</tr>
<tr>
<td>IPDM-E BRANCH LINE CIRCUIT</td>
<td>MAIN LINE BETWEEN DLC AND HVAC CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>54</td>
<td>73</td>
</tr>
<tr>
<td>CAN COMMUNICATION CIRCUIT</td>
<td>MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>55</td>
<td>74</td>
</tr>
<tr>
<td>CAN SYSTEM (TYPE 2)</td>
<td>MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>56</td>
<td>75</td>
</tr>
<tr>
<td>DTC/CIRCUIT DIAGNOSIS</td>
<td>ECM BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>57</td>
<td>76</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN DLC AND HVAC CIRCUIT</td>
<td>ADP BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>57</td>
<td>77</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT</td>
<td>BCM BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>58</td>
<td>78</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT</td>
<td>DLC BRANCH LINE CIRCUIT</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>Diagnosis Procedure</td>
</tr>
<tr>
<td>59</td>
<td>79</td>
</tr>
<tr>
<td>CAN SYSTEM (TYPE 3)</td>
<td>103</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>DTC/CIRCUIT DIAGNOSIS</td>
<td>105</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT</td>
<td>101</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>101</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT</td>
<td>100</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>100</td>
</tr>
<tr>
<td>CAN SYSTEM (TYPE 4)</td>
<td>107</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT</td>
<td>108</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>108</td>
</tr>
<tr>
<td>DTC/CIRCUIT DIAGNOSIS</td>
<td>109</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN DLC AND HVAC CIRCUIT</td>
<td>105</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>105</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT</td>
<td>106</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>106</td>
</tr>
<tr>
<td>CAN COMMUNICATION CIRCUIT</td>
<td>107</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>107</td>
</tr>
<tr>
<td>DTC/CIRCUIT DIAGNOSIS</td>
<td>108</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT</td>
<td>109</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>109</td>
</tr>
<tr>
<td>CAN COMMUNICATION CIRCUIT</td>
<td>110</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>110</td>
</tr>
<tr>
<td>DTC/CIRCUIT DIAGNOSIS</td>
<td>111</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN DLC AND HVAC CIRCUIT</td>
<td>112</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>112</td>
</tr>
<tr>
<td>CAN COMMUNICATION CIRCUIT</td>
<td>113</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>113</td>
</tr>
<tr>
<td>DTC/CIRCUIT DIAGNOSIS</td>
<td>114</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT</td>
<td>115</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>115</td>
</tr>
<tr>
<td>CAN COMMUNICATION CIRCUIT</td>
<td>116</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>116</td>
</tr>
<tr>
<td>DTC/CIRCUIT DIAGNOSIS</td>
<td>117</td>
</tr>
<tr>
<td>MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT</td>
<td>118</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>118</td>
</tr>
<tr>
<td>CAN COMMUNICATION CIRCUIT</td>
<td>119</td>
</tr>
<tr>
<td>Diagnosis Procedure</td>
<td>119</td>
</tr>
</tbody>
</table>

Diagnosis Procedure

- M&A BRANCH LINE CIRCUIT 80
 Diagnosis Procedure 80
- HVAC BRANCH LINE CIRCUIT 81
 Diagnosis Procedure 81
- STRG BRANCH LINE CIRCUIT 82
 Diagnosis Procedure 82
- A-BAG BRANCH LINE CIRCUIT 83
 Diagnosis Procedure 83
- ABS BRANCH LINE CIRCUIT 84
 Diagnosis Procedure 84
- TCM BRANCH LINE CIRCUIT 85
 Diagnosis Procedure 85
- IPDM-E BRANCH LINE CIRCUIT 86
 Diagnosis Procedure 86
- CAN COMMUNICATION CIRCUIT 87
 Diagnosis Procedure 87
- DTC/CIRCUIT DIAGNOSIS 88
 MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT | 89
 Diagnosis Procedure 89
 MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT | 90
 Diagnosis Procedure 90
 MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT | 91
 Diagnosis Procedure 91
 ECM BRANCH LINE CIRCUIT 92
 Diagnosis Procedure 92
 BCM BRANCH LINE CIRCUIT 93
 Diagnosis Procedure 93
 DLC BRANCH LINE CIRCUIT 94
 Diagnosis Procedure 94
 M&A BRANCH LINE CIRCUIT 95
 Diagnosis Procedure 95
 AV BRANCH LINE CIRCUIT 96
 Diagnosis Procedure 96
 HVAC BRANCH LINE CIRCUIT 97
 Diagnosis Procedure 97
 STRG BRANCH LINE CIRCUIT 98
 Diagnosis Procedure 98
 A-BAG BRANCH LINE CIRCUIT 99
 Diagnosis Procedure 99
 ABS BRANCH LINE CIRCUIT 100
 Diagnosis Procedure 100
 TCM BRANCH LINE CIRCUIT 101
 Diagnosis Procedure 101
 IPDM-E BRANCH LINE CIRCUIT 102
 Diagnosis Procedure 102
 CAN COMMUNICATION CIRCUIT 103
 Diagnosis Procedure 103
 DTC/CIRCUIT DIAGNOSIS 104
 MAIN LINE BETWEEN ADP AND DLC CIRCUIT | 105
 Diagnosis Procedure 105
 MAIN LINE BETWEEN DLC AND HVAC CIRCUIT | 106
 Diagnosis Procedure 106
 MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT | 107
 Diagnosis Procedure 107
 MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT | 108
 Diagnosis Procedure 108
 ECM BRANCH LINE CIRCUIT 109
 Diagnosis Procedure 109
 ADP BRANCH LINE CIRCUIT 110
 Diagnosis Procedure 110
 BCM BRANCH LINE CIRCUIT 111
 Diagnosis Procedure 111
 DLC BRANCH LINE CIRCUIT 112
 Diagnosis Procedure 112
 M&A BRANCH LINE CIRCUIT 113
 Diagnosis Procedure 113
 AV BRANCH LINE CIRCUIT 114
 Diagnosis Procedure 114
 HVAC BRANCH LINE CIRCUIT 115
 Diagnosis Procedure 115
 STRG BRANCH LINE CIRCUIT 116
 Diagnosis Procedure 116
 A-BAG BRANCH LINE CIRCUIT 117
 Diagnosis Procedure 117
 ABS BRANCH LINE CIRCUIT 118
 Diagnosis Procedure 118
 TCM BRANCH LINE CIRCUIT 119
 Diagnosis Procedure 119
IPDM-E BRANCH LINE CIRCUIT 120
 Diagnosis Procedure ...120
CAN COMMUNICATION CIRCUIT 121
 Diagnosis Procedure ...121
CAN SYSTEM (TYPE 5) ..122
DTC/CIRCUIT DIAGNOSIS 123
MAIN LINE BETWEEN DLC AND HVAC CIRCUIT ... 123
 Diagnosis Procedure ...123
MAIN LINE BETWEEN HVAC AND ABS CIRCUIT ... 124
 Diagnosis Procedure ...124
ECM BRANCH LINE CIRCUIT 125
 Diagnosis Procedure ...125
BCM BRANCH LINE CIRCUIT 126
 Diagnosis Procedure ...126
DLC BRANCH LINE CIRCUIT 127
 Diagnosis Procedure ...127
M&A BRANCH LINE CIRCUIT 128
 Diagnosis Procedure ...128
HVAC BRANCH LINE CIRCUIT 129
 Diagnosis Procedure ...129
STRG BRANCH LINE CIRCUIT 130
 Diagnosis Procedure ...130
ABS BRANCH LINE CIRCUIT 131
 Diagnosis Procedure ...131
TCM BRANCH LINE CIRCUIT 132
 Diagnosis Procedure ...132
IPDM-E BRANCH LINE CIRCUIT 133
 Diagnosis Procedure ...133
CAN COMMUNICATION CIRCUIT 134
 Diagnosis Procedure ...134
CAN SYSTEM (TYPE 6) ..135
DTC/CIRCUIT DIAGNOSIS 136
MAIN LINE BETWEEN ADP AND DLC CIRCUIT ... 136
 Diagnosis Procedure ...136
MAIN LINE BETWEEN DLC AND HVAC CIRCUIT ... 137
 Diagnosis Procedure ...137
MAIN LINE BETWEEN HVAC AND ABS CIRCUIT ... 138
 Diagnosis Procedure ...138
ECM BRANCH LINE CIRCUIT 139
 Diagnosis Procedure ...139
ADP BRANCH LINE CIRCUIT 140
 Diagnosis Procedure ...140
BCM BRANCH LINE CIRCUIT 141
 Diagnosis Procedure ...141
DLC BRANCH LINE CIRCUIT 142
 Diagnosis Procedure ...142
M&A BRANCH LINE CIRCUIT 143
 Diagnosis Procedure ...143
AV BRANCH LINE CIRCUIT144
 Diagnosis Procedure ... 144
HVAC BRANCH LINE CIRCUIT 145
 Diagnosis Procedure ...145
STRG BRANCH LINE CIRCUIT 146
 Diagnosis Procedure ...146
ABS BRANCH LINE CIRCUIT 147
 Diagnosis Procedure ...147
TCM BRANCH LINE CIRCUIT 148
 Diagnosis Procedure ...148
IPDM-E BRANCH LINE CIRCUIT 149
 Diagnosis Procedure ...149
CAN COMMUNICATION CIRCUIT 150
 Diagnosis Procedure ...150
< PRECAUTION >

PRECAUTION

PRECAUTIONS

Precautions for Trouble Diagnosis

CAUTION:
• Never apply 7.0 V or more to the measurement terminal.
• Use a tester with open terminal voltage of 7.0 V or less.
• Turn the ignition switch OFF and disconnect the battery cable from the negative terminal when checking the harness.

Precautions for Harness Repair

• Solder the repaired area and wrap tape around the soldered area.
 NOTE:
 A fray of twisted lines must be within 110 mm (4.33 in).

• Bypass connection is never allowed at the repaired area.
 NOTE:
 Bypass connection may cause CAN communication error. The spliced wire becomes separated and the characteristics of twisted line are lost.

• Replace the applicable harness as an assembly if error is detected on the shield lines of CAN communication line.
CAN COMMUNICATION SYSTEM

SYSTEM DESCRIPTION
CAN COMMUNICATION SYSTEM

System Description

- CAN communication is a multiplex communication system. This enables the system to transmit and receive large quantities of data at high speed by connecting control units with two communication lines (CAN-H and CAN-L).
- Control units on the CAN network transmit signals using the CAN communication control circuit. They receive only necessary signals from other control units to operate various functions.
- CAN communication lines adopt twisted-pair line style (two lines twisted) for noise immunity.

System Diagram

Each control unit passes an electric current to the termination circuits when transmitting CAN communication signal. The termination circuits produce an electrical potential difference between CAN-H and CAN-L. CAN communication system transmits and receives CAN communication signals by the potential difference.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main line</td>
<td>CAN communication line between splices</td>
</tr>
<tr>
<td>Branch line</td>
<td>CAN communication line between splice and a control unit</td>
</tr>
<tr>
<td>Splice</td>
<td>A point connecting a branch line with a main line</td>
</tr>
<tr>
<td>Termination circuit</td>
<td>Refer to LAN-7, "CAN Communication Control Circuit"</td>
</tr>
</tbody>
</table>

Revision: August 2012
2012 Maxima
CAN COMMUNICATION SYSTEM

< SYSTEM DESCRIPTION >

CAN Communication Control Circuit

![Diagram of CAN Communication Control Circuit]

<table>
<thead>
<tr>
<th>Component</th>
<th>System description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN controller</td>
<td>It controls CAN communication signal transmission and reception, error detection, etc.</td>
</tr>
<tr>
<td>Transceiver IC</td>
<td>It converts digital signal into CAN communication signal, and CAN communication signal into digital signal.</td>
</tr>
<tr>
<td>Noise filter</td>
<td>It eliminates noise of CAN communication signal.</td>
</tr>
<tr>
<td>Termination circuit*</td>
<td>It produces potential difference.</td>
</tr>
<tr>
<td>(Resistance of approx. 120 Ω)</td>
<td></td>
</tr>
</tbody>
</table>

*: These are the only control units wired with both ends of CAN communication system.
Description

“Diag on CAN” is a diagnosis using CAN communication instead of previous DDL1 and DDL2 communication lines, between control units and diagnosis unit.

System Diagram

<table>
<thead>
<tr>
<th>Name</th>
<th>Harness</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDL1</td>
<td>Tx, Rx</td>
<td>It is used for trouble diagnosis. (CAN-H and CAN-L are used for controlling)</td>
</tr>
<tr>
<td>DDL2</td>
<td>K-LINE</td>
<td>It is used for trouble diagnosis. (CAN-H and CAN-L are used for controlling)</td>
</tr>
<tr>
<td>Diag on CAN</td>
<td>CAN-H, CAN-L</td>
<td>It is used for trouble diagnosis and control.</td>
</tr>
</tbody>
</table>
TROUBLE DIAGNOSIS

Condition of Error Detection

DTC (e.g. U1000 and U1001) of CAN communication is indicated on SELF-DIAG RESULTS on CONSULT if a CAN communication signal is not transmitted or received between units for 2 seconds or more.

CAN COMMUNICATION SYSTEM ERROR

- CAN communication line open (CAN-H, CAN-L, or both)
- CAN communication line short (ground, between CAN communication lines, other harnesses)
- Error of CAN communication control circuit of the unit connected to CAN communication line

WHEN DTC OF CAN COMMUNICATION IS INDICATED EVEN THOUGH CAN COMMUNICATION SYSTEM IS NORMAL

- Removal/installation of parts: Error may be detected when removing and installing CAN communication unit and related parts while turning the ignition switch ON. (A DTC except for CAN communication may be detected.)
- Fuse blown out (removed): CAN communication of the unit may cease.
- Voltage drop: Error may be detected if voltage drops due to discharged battery when turning the ignition switch ON (Depending on the control unit which carries out CAN communication).
- Error may be detected if the power supply circuit of the control unit, which carries out CAN communication, malfunctions (Depending on the control unit which carries out CAN communication).
- Error may be detected if reprogramming is not completed normally.

CAUTION:

CAN communication system is normal if DTC of CAN communication is indicated on SELF-DIAG RESULTS of CONSULT under the above conditions. Erase the memory of the self-diagnosis of each unit.

Symptom When Error Occurs in CAN Communication System

In CAN communication system, multiple units mutually transmit and receive signals. Each unit cannot transmit and receive signals if any error occurs on CAN communication line. Under this condition, multiple control units related to the root cause malfunction or go into fail-safe mode.

ERROR EXAMPLE

NOTE:

- Each vehicle differs in symptom of each unit under fail-safe mode and CAN communication line wiring.
- Refer to LAN-20, "Abbreviation List" for the unit abbreviation.

Example: TCM branch line open circuit

```
Unit name  | Symptom                                                  
-----------|----------------------------------------------------------
ECM        | Engine torque limiting is affected, and shift harshness increases. 
BCM        | Reverse warning chime does not sound. 
```

Revision: August 2012
Example: Data link connector branch line open circuit

<table>
<thead>
<tr>
<th>Unit name</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS control unit</td>
<td>Normal operation.</td>
</tr>
</tbody>
</table>
| Combination meter | • Shift position indicator and OD OFF indicator turn OFF.
 | • Warning lamps turn ON. |
| ABS actuator and electric unit (control unit)| Normal operation. |
| TCM | No impact on operation. |
| IPDM E/R | Normal operation. |

NOTE:
- When data link connector branch line is open, transmission and reception of CAN communication signals are not affected. Therefore, no symptoms occur. However, be sure to repair malfunctioning circuit.
- The model (all units on CAN communication system are Diag on CAN) cannot perform CAN diagnosis with CONSULT if the following error occurs. The error is judged by the symptom.

<table>
<thead>
<tr>
<th>Unit name</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>BCM</td>
<td></td>
</tr>
<tr>
<td>EPS control unit</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>Combination meter</td>
<td></td>
</tr>
<tr>
<td>ABS actuator and electric unit (control unit)</td>
<td></td>
</tr>
<tr>
<td>TCM</td>
<td></td>
</tr>
<tr>
<td>IPDM E/R</td>
<td></td>
</tr>
</tbody>
</table>

Error

<table>
<thead>
<tr>
<th>Error</th>
<th>Difference of symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data link connector branch line open circuit</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>CAN-H, CAN-L harness short-circuit</td>
<td>Most of the units which are connected to the CAN communication system enter fail-safe mode or are deactivated.</td>
</tr>
</tbody>
</table>
CAN FUNDAMENTAL

Example: Main Line Between Data Link Connector and ABS Actuator and Electric Unit (Control Unit) Open Circuit

![Diagram](image1)

<table>
<thead>
<tr>
<th>Unit name</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM</td>
<td>Engine torque limiting is affected, and shift harshness increases.</td>
</tr>
<tr>
<td>BCM</td>
<td>• Reverse warning chime does not sound.</td>
</tr>
<tr>
<td></td>
<td>• The front wiper moves under continuous operation mode even though the front wiper switch being in the intermittent position.</td>
</tr>
<tr>
<td>EPS control unit</td>
<td>The steering effort increases.</td>
</tr>
<tr>
<td>Combination meter</td>
<td>• The shift position indicator and OD OFF indicator turn OFF.</td>
</tr>
<tr>
<td></td>
<td>• The speedometer is inoperative.</td>
</tr>
<tr>
<td></td>
<td>• The odo/trip meter stops.</td>
</tr>
<tr>
<td>ABS actuator and electric unit (control unit)</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>TCM</td>
<td>No impact on operation.</td>
</tr>
<tr>
<td>IPDM E/R</td>
<td>When the ignition switch is ON,</td>
</tr>
<tr>
<td></td>
<td>• The headlamps (Lo) turn ON.</td>
</tr>
<tr>
<td></td>
<td>• The cooling fan continues to rotate.</td>
</tr>
</tbody>
</table>

Example: CAN-H, CAN-L Harness Short Circuit

![Diagram](image2)

Revision: August 2012

LAN-11 2012 Maxima
TROUBLE DIAGNOSIS

< SYSTEM DESCRIPTION >

[CAN FUNDAMENTAL]

<table>
<thead>
<tr>
<th>Unit name</th>
<th>Symptom</th>
</tr>
</thead>
</table>
| ECM | • Engine torque limiting is affected, and shift harshness increases.
• Engine speed drops. |
| BCM | • Reverse warning chime does not sound.
• The front wiper moves under continuous operation mode even though the front wiper switch being in the intermittent position.
• The room lamp does not turn ON.
• The engine does not start (if an error or malfunction occurs while turning the ignition switch OFF.)
• The steering lock does not release (if an error or malfunction occurs while turning the ignition switch OFF.) |
| EPS control unit | The steering effort increases. |
| Combination meter | • The tachometer and the speedometer do not move.
• Warning lamps turn ON.
• Indicator lamps do not turn ON. |
| ABS actuator and electric unit (control unit) | Normal operation. |
| TCM | No impact on operation. |
| IPDM E/R | When the ignition switch is ON,
• The headlamps (Lo) turn ON.
• The cooling fan continues to rotate. |

CAN Diagnosis with CONSULT

CAN diagnosis on CONSULT extracts the root cause by receiving the following information.
- Response to the system call
- Control unit diagnosis information
- Self-diagnosis
- CAN diagnostic support monitor

Self-Diagnosis

If communication signals cannot be transmitted or received among units communicating via CAN communication line, CAN communication-related DTC is displayed on the CONSULT “Self Diagnostic Result” screen.

NOTE:
The following table shows examples of CAN communication-related DTC. For other DTC, refer to the applicable sections.

<table>
<thead>
<tr>
<th>DTC</th>
<th>Self-diagnosis item (CONSULT indication)</th>
<th>DTC detection condition</th>
<th>Inspection/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1000</td>
<td>CAN COMM CIRCUIT</td>
<td>ECM</td>
<td>Start the inspection. Refer to the applicable section of the indicated control unit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Except for ECM</td>
<td></td>
</tr>
<tr>
<td>U1001</td>
<td>CAN COMM CIRCUIT</td>
<td>When ECM is not transmitting or receiving CAN communication signal other than OBD (emission-related diagnosis) for 2 seconds or more.</td>
<td></td>
</tr>
<tr>
<td>U1002</td>
<td>SYSTEM COMM</td>
<td>When a control unit is not transmitting or receiving CAN communication signal for 2 seconds or less.</td>
<td></td>
</tr>
<tr>
<td>U1010</td>
<td>CONTROL UNIT(CAN)</td>
<td>When an error is detected during the initial diagnosis for CAN controller of each control unit.</td>
<td></td>
</tr>
</tbody>
</table>

CAN Diagnostic Support Monitor

MONITOR ITEM (CONSULT)
MONITOR ITEM (ON-BOARD DIAGNOSIS)

NOTE:
For some models, CAN communication diagnosis result is received from the vehicle monitor.

Example: CAN DIAG SUPPORT MNTR indication

Without PAST

<table>
<thead>
<tr>
<th>Item</th>
<th>PRSNT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial diagnosis</td>
<td>OK</td>
<td>Normal at present</td>
</tr>
<tr>
<td></td>
<td>NG</td>
<td>Control unit error (Except for some control units)</td>
</tr>
<tr>
<td>Transmission diagnosis</td>
<td>OK</td>
<td>Normal at present</td>
</tr>
<tr>
<td></td>
<td>UNKWN</td>
<td>Unable to transmit signals for 2 seconds or more.</td>
</tr>
<tr>
<td></td>
<td>OK</td>
<td>Normal at present</td>
</tr>
<tr>
<td>Control unit name</td>
<td>UNKWN</td>
<td>Unable to receive signals for 2 seconds or more.</td>
</tr>
</tbody>
</table>

With PAST

<table>
<thead>
<tr>
<th>Item</th>
<th>PRSNT</th>
<th>PAST</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission diagnosis</td>
<td>OK</td>
<td>1 – 39</td>
<td>Normal at present, but unable to transmit signals for 2 seconds or more in the past. (The number indicates the number of ignition switch cycles from OFF to ON.)</td>
</tr>
<tr>
<td></td>
<td>UNKWN</td>
<td>0</td>
<td>Unable to transmit signals for 2 seconds or more at present.</td>
</tr>
<tr>
<td>Control unit name</td>
<td>OK</td>
<td>1 – 39</td>
<td>Normal at present, but unable to receive signals for 2 seconds or more in the past. (The number indicates the number of ignition switch cycles from OFF to ON.)</td>
</tr>
<tr>
<td>(Reception diagnosis)</td>
<td>UNKWN</td>
<td>0</td>
<td>Unable to receive signals for 2 seconds or more at present.</td>
</tr>
</tbody>
</table>

NOTE:
For some models, CAN communication diagnosis result is received from the vehicle monitor.
How to Use CAN Communication Signal Chart

The CAN communication signal chart lists the signals needed for trouble diagnosis. It is useful for detecting the root cause by finding a signal related to the symptom, and by checking transmission and reception unit.

<table>
<thead>
<tr>
<th>Item</th>
<th>Result indicated</th>
<th>Error counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN_COMM (Initial diagnosis)</td>
<td>OK</td>
<td>0</td>
<td>Normal at present</td>
</tr>
<tr>
<td></td>
<td>NG</td>
<td>1 – 50</td>
<td>Control unit error (The number indicates how many times diagnosis has been run.)</td>
</tr>
<tr>
<td>CAN_CIRC_1 (Transmission diagnosis)</td>
<td>OK</td>
<td>0</td>
<td>Normal at present</td>
</tr>
<tr>
<td></td>
<td>UNKWN</td>
<td>1 – 50</td>
<td>Unable to transmit for 2 seconds or more at present. (The number indicates how many times diagnosis has been run.)</td>
</tr>
<tr>
<td>CAN_CIRC_2 – 9 (Reception diagnosis of each unit)</td>
<td>OK</td>
<td>0</td>
<td>Normal at present</td>
</tr>
<tr>
<td></td>
<td>UNKWN</td>
<td>1 – 50</td>
<td>Unable to transmit for 2 seconds or more at present. (The number indicates how many times diagnosis has been run.) Diagnosis not performed.</td>
</tr>
</tbody>
</table>

Example: Tachometer does not move even though the engine rotates.

<table>
<thead>
<tr>
<th>Signal name/Connecting unit</th>
<th>ECM</th>
<th>BCM</th>
<th>M&A</th>
<th>STRG</th>
<th>ABS</th>
<th>PDM-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C compressor feedback signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>A/C compressor request signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Accelerator pedal position signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cooling fan motor operation signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Engine speed signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Fuel consumption monitor signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Malfunction indicator lamp signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>A/C switch signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Ignition switch signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Sleep/wake up signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

It indicates that an error occurs between ECM and M&A (Shaded area).

No communication between ECM and M&A.
INTERVIEW WITH CUSTOMER

Interview with the customer is important to detect the root cause of CAN communication system errors and to understand vehicle condition and symptoms for proper trouble diagnosis.

Points in interview
- What: Parts name, system name
- When: Date, Frequency
- Where: Road condition, Place
- In what condition: Driving condition/environment
- Result: Symptom

NOTE:
- Check normal units as well as error symptoms.
- Example: Circuit between ECM and the combination meter is judged normal if the customer indicates tachometer functions normally.
- When a CAN communication system error is present, multiple control units may malfunction or go into fail-safe mode.
DIAGNOSIS AND REPAIR WORKFLOW

< BASIC INSPECTION >

[CAN FUNDAMENTAL]

- Indication of the combination meter is important to detect the root cause because it is the most obvious to the customer, and it performs CAN communication with many units.

INSPECTION OF VEHICLE CONDITION
Check whether the symptom is reproduced or not.

NOTE:
Do not turn the ignition switch OFF or disconnect the battery cable while reproducing the error. The error may temporarily correct itself, making it difficult to determine the root cause.

CHECK OF CAN SYSTEM TYPE (HOW TO USE CAN SYSTEM TYPE SPECIFICATION CHART)
Determine CAN system type based on vehicle equipment.

NOTE:
- This chart is used if CONSULT does not automatically recognize CAN system type.
- There are two styles for CAN system type specification charts. Depending on the number of available system types, either style A or style B may be used.

CAN System Type Specification Chart (Style A)

NOTE:
CAN system type is easily checked with the vehicle equipment identification information shown in the chart.

CAN System Type Specification Chart

<table>
<thead>
<tr>
<th>Body type</th>
<th>Wagon</th>
<th>2WD</th>
<th>AWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>QR25DE</td>
<td>VQ35DE</td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td>A/T</td>
<td>CVT</td>
<td></td>
</tr>
<tr>
<td>Brake control</td>
<td>ABS</td>
<td>VDC</td>
<td></td>
</tr>
<tr>
<td>Intelligent Key system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CAN system type</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CAN communication signal chart</td>
<td>XX-XX - "TYPE 1/TYPE 2"</td>
<td>XX-XX - "TYPE 3/TYPE 4"</td>
<td>XX-XX - "TYPE 5/TYPE 6"</td>
</tr>
</tbody>
</table>

NOTE:

Check the vehicle equipment with the vehicle identification number plate. The number indicates the CAN system type of the vehicle.

VEHICLE EQUIPMENT IDENTIFICATION INFORMATION

NOTE:

Check CAN system type from the vehicle shape and equipment.

With VDC

- VDC OFF switch

With Intelligent Key system

- Ignition knob

In the above example, • Checking VDC OFF switch leads to judge whether or not VDC is equipped.

• Checking the ignition knob leads to judge whether or not Intelligent Key system is equipped.

For the above case, CAN system type is "6"
CAN system type is easily checked with the vehicle equipment identification information shown in the chart.

EXAMPLE:
Vehicle is equipped as follows: Sedan, 2WD, MR20DE, CVT, ABS, Active AFS, Intelligent Key system, Navigation system and Automatic drive positioner. () shows an example of CAN system type.

CAN System Specification Chart
Refer to the specification as shown in the chart.

<table>
<thead>
<tr>
<th>Body type</th>
<th>Sedan</th>
<th>2WD</th>
<th>AWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td>HR1DE</td>
<td>MR20DE</td>
<td>HR1DE</td>
</tr>
<tr>
<td>Transmission</td>
<td>A/T</td>
<td>CVT</td>
<td>A/T</td>
</tr>
<tr>
<td>Brake control</td>
<td>ABS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATION CHART B
Determine CAN system type from the following specification chart.

<table>
<thead>
<tr>
<th>Body type</th>
<th>Sedan</th>
<th>2WD</th>
<th>AWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td>MR20DE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td>CVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake control</td>
<td>ABS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active AFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligent Key system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigation system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic drive positioner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN system type</td>
<td>9 10 11 12 13 14 15 16 17 18 19 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN communication signal chart</td>
<td>XXX</td>
<td>XXX</td>
<td>XXX</td>
</tr>
</tbody>
</table>

* : Applicable

VEHICLE EQUIPMENT IDENTIFICATION INFORMATION
NOTE: Check CAN system type from the vehicle shape and equipment.

- **With active AFS**
 - Bending lamp
 - Xenon bulb

- **With Intelligent Key system**
 - Ignition knob

- **With Navigation system**
 - Display
 - Multifunction switch

- **With Automatic drive positioner**
 - Seat memory switch

In the above example:
- Checking Xenon bulb and bending lamp lead to judge whether or not Active AFS is equipped.
- Checking the ignition knob leads to judge whether or not Intelligent Key system is equipped.
- Checking display and multifunction switch lead to judge whether or not Navigation system is equipped.
- Checking seat memory switch leads to judge whether or not Automatic drive positioner is equipped.

For the above case, CAN system type is 20.

CREATE INTERVIEW SHEET
Fill out the symptom described by the customer, vehicle condition, and CAN system type on the interview sheet.
CAN Communication System Diagnosis Interview Sheet

Date received: 3, Feb. 2006

Type: DBA-KG11

VIN No.: KG11-005040

Model: BDRARGZ397EDA-E-J-

First registration: 10, Jan. 2001

Mileage: 62,140

CAN system type: Type 19

Symptom (Results from interview with customer)

- Headlamps suddenly turn ON while driving the vehicle.
- The engine does not restart after stopping the vehicle and turning the ignition switch OFF.
- The cooling fan continues rotating while turning the ignition switch ON.

Condition at inspection

Error Symptom: **Present**/Past

The engine does not start. While turning the ignition switch ON,
- The headlamps (Lo) turn ON, and the cooling fan continues rotating.
- The interior lamp does not turn ON.

DETECT THE ROOT CAUSE

CAN diagnosis function of CONSULT detects the root cause.
HOW TO USE THIS MANUAL

Caution

- This section describes information peculiar to a vehicle and inspection procedures.
- For trouble diagnosis procedure, refer to LAN-15, "Trouble Diagnosis Procedure".

Abbreviation List

Unit name abbreviations in CONSULT CAN diagnosis and in this section are as per the following list.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Unit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-BAG</td>
<td>Air bag diagnosis sensor unit</td>
</tr>
<tr>
<td>ABS</td>
<td>ABS actuator and electric unit (control unit)</td>
</tr>
<tr>
<td>ADP</td>
<td>Driver seat control unit</td>
</tr>
<tr>
<td>AV</td>
<td>AV control unit</td>
</tr>
<tr>
<td>BCM</td>
<td>BCM</td>
</tr>
<tr>
<td>DLC</td>
<td>Data link connector</td>
</tr>
<tr>
<td>ECM</td>
<td>ECM</td>
</tr>
<tr>
<td>HVAC</td>
<td>A/C auto amp.</td>
</tr>
<tr>
<td>IPDM-E</td>
<td>IPDM E/R</td>
</tr>
<tr>
<td>M&A</td>
<td>Combination meter</td>
</tr>
<tr>
<td>STRG</td>
<td>Steering angle sensor</td>
</tr>
<tr>
<td>TCM</td>
<td>TCM</td>
</tr>
</tbody>
</table>
The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the “SRS AIR BAG” and “SEAT BELT” of this Service Manual.

WARNING:
Always observe the following items for preventing accidental activation.

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision that would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see “SRS AIR BAG”.
- Never use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

PRECAUTIONS WHEN USING POWER TOOLS (AIR OR ELECTRIC) AND HAMMERS

WARNING:
Always observe the following items for preventing accidental activation.

- When working near the Air Bag Diagnosis Sensor Unit or other Air Bag System sensors with the ignition ON or engine running, never use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.
- When using air or electric power tools or hammers, always switch the ignition OFF, disconnect the battery, and wait at least 3 minutes before performing any service.

Precautions for Trouble Diagnosis

CAUTION:
- Never apply 7.0 V or more to the measurement terminal.
- Use a tester with open terminal voltage of 7.0 V or less.
- Turn the ignition switch OFF and disconnect the battery cable from the negative terminal when checking the harness.

Precautions for Harness Repair

- Solder the repaired area and wrap tape around the soldered area. **NOTE:**
 A fray of twisted lines must be within 110 mm (4.33 in).
• Bypass connection is never allowed at the repaired area.
 NOTE:
 Bypass connection may cause CAN communication error. The spliced wire becomes separated and the characteristics of twisted line are lost.

• Replace the applicable harness as an assembly if error is detected on the shield lines of CAN communication line.
BASIC INSPECTION

DIAGNOSIS AND REPAIR WORKFLOW

Interview Sheet

CAN Communication System Diagnosis Interview Sheet

Date received:

Type:

VIN No.:

Model:

First registration:

Mileage:

CAN system type:

Symptom (Results from interview with customer)

Condition at inspection

Error symptom: Present / Past
< SYSTEM DESCRIPTION >

CAN COMMUNICATION SYSTEM

CAN COMMUNICATION SYSTEM

CAN System Specification Chart

Determine CAN system type from the following specification chart.

NOTE:
Refer to LAN-15, "Trouble Diagnosis Procedure" for how to use CAN system specification chart.

<table>
<thead>
<tr>
<th>Body type</th>
<th>Sedan</th>
<th>2WD</th>
<th>VQ35DE</th>
<th>CVT</th>
<th>VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic drive positioner</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Color display</td>
<td></td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>CAN system type</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

×: Applicable

VEHICLE EQUIPMENT IDENTIFICATION INFORMATION

NOTE:
Check CAN system type from the vehicle shape and equipment.

1. Seat memory switches 2. Color display
 A. With automatic drive positioner B. With color display

CAN Communication Signal Chart

Refer to LAN-14, "How to Use CAN Communication Signal Chart" for how to use CAN communication signal chart.

NOTE:
Refer to LAN-20, "Abbreviation List" for the abbreviations of the connecting units.

<table>
<thead>
<tr>
<th>Signal name/Connecting unit</th>
<th>ECM</th>
<th>ADP</th>
<th>BCM</th>
<th>M&A</th>
<th>AV</th>
<th>HVAC</th>
<th>STRG</th>
<th>ABS</th>
<th>TCM</th>
<th>PDME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C compressor request signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerator pedal position signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Revision: August 2012
<table>
<thead>
<tr>
<th>Signal name/Connecting unit</th>
<th>ECM</th>
<th>ADP</th>
<th>BCM</th>
<th>M&A</th>
<th>AV</th>
<th>HVAC</th>
<th>STRG</th>
<th>ABS</th>
<th>TCM</th>
<th>IPDM-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCD CRUISE indicator signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCD SET indicator signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed throttle position signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling fan speed request signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine and CVT integrated control signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature signal</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Engine status signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel consumption monitor signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel filler cap warning display signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malfunction indicator lamp signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generation command value signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>System setting signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/C switch signal</td>
<td>R</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower fan motor switch signal</td>
<td>R</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering angle sensor signal</td>
<td></td>
<td></td>
<td>R*1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>Buzzer output signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornering lamp request signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day time running light request signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door lock/unlock status signal</td>
<td>R</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door switch signal</td>
<td>R</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front fog light request signal</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front wiper request signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High beam request signal</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Horn chirp signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignition switch signal</td>
<td></td>
<td>R</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key fob door unlock signal</td>
<td>R</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key fob ID signal</td>
<td>R</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key switch signal</td>
<td>R</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key warning signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low beam request signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pressure switch signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position light request signal</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Rear window defogger control signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear window defogger switch signal</td>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Sleep wake up signal</td>
<td></td>
<td>R</td>
<td>T</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop lamp switch signal</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cruise Control Indicator Signal
Set Indicator Signal
Closed Throttle Position Signal
Cooling Fan Speed Request Signal
Engine and CVT Integrated Control Signal
Engine Coolant Temperature Signal
Engine Speed Signal
Engine Status Signal
Fuel Consumption Monitor Signal
Fuel Filler Cap Warning Display Signal
Malfunction Indicator Lamp Signal
Power Generation Command Value Signal
System Setting Signal
A/C Switch Signal
Blower Fan Motor Switch Signal
Steering Angle Sensor Signal
Buzzer Output Signal
Cornering Lamp Request Signal
Day Time Running Light Request Signal
Door Lock/Unlock Status Signal
Door Switch Signal
Front Fog Light Request Signal
Front Wiper Request Signal
High Beam Request Signal
Horn Chirp Signal
Ignition Switch Signal
Key fob Door Unlock Signal
Key fob ID Signal
Key Switch Signal
Key Warning Signal
Low Beam Request Signal
Oil Pressure Switch Signal
Position Light Request Signal
Rear Window Defogger Control Signal
Rear Window Defogger Switch Signal
Sleep Wake Up Signal
Stop Lamp Switch Signal

Revision: August 2012
LAN-25
2012 Maxima
CAN COMMUNICATION SYSTEM

<table>
<thead>
<tr>
<th>Signal name/Connecting unit</th>
<th>ECM</th>
<th>ADP</th>
<th>BCM</th>
<th>M&A</th>
<th>AV</th>
<th>HVAC</th>
<th>STRG</th>
<th>ABS</th>
<th>TCM</th>
<th>IPDM-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theft warning horn request signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk switch signal</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn indicator signal</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to empty signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Fuel filler cap warning reset signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Fuel level low warning signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Fuel level sensor signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Manual mode shift down signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Manual mode shift up signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Manual mode signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Market information signal</td>
<td>T</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non manual mode signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Paddle shifter shift down signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Paddle shifter shift up signal</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Parking brake switch signal</td>
<td>R</td>
<td></td>
<td>T</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat belt buckle switch signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep-ready signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Vehicle speed signal</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>A/C control signal</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>ABS operation signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>ABS warning lamp signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>Brake warning lamp signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>SLIP indicator lamp signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>VDC OFF indicator lamp signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>VDC operation signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>CVT indicator lamp signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>CVT self-diagnosis signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Input shaft revolution signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Manual mode indicator signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Output shaft revolution signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>P range signal</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>R range signal</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Shift position signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>A/C compressor feedback signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>Cooling fan speed signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>Detention switch signal</td>
<td></td>
<td></td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Front wiper stop position signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>High beam status signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>Hood switch signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>

Revision: August 2012

2012 Maxima
CAN COMMUNICATION SYSTEM

< SYSTEM DESCRIPTION >

<table>
<thead>
<tr>
<th>Signal name/Connecting unit</th>
<th>ECM</th>
<th>ADP</th>
<th>BCM</th>
<th>M&A</th>
<th>AV</th>
<th>HVAC</th>
<th>STRG</th>
<th>ABS</th>
<th>TCM</th>
<th>IPDM-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low beam status signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Push-button ignition switch status signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Steering lock unit status signal</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

*1: Models with rear view monitor

*2: Models with paddle shifter

NOTE:

CAN data of the air bag diagnosis sensor unit is not used by usual service work, thus it is omitted.
CAN System Wiring Diagram

Connector No.: M35
Connector Name: AIR BAG DIAGNOSIS SENSOR UNIT
Connector Color: YELLOW

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color of Wire</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>L</td>
<td>CAN-H</td>
</tr>
<tr>
<td>46</td>
<td>P</td>
<td>CAN-L</td>
</tr>
</tbody>
</table>

Connector No.: M24
Connector Name: COMBINATION METER
Connector Color: WHITE

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color of Wire</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>L</td>
<td>CAN-H</td>
</tr>
<tr>
<td>22</td>
<td>P</td>
<td>CAN-L</td>
</tr>
</tbody>
</table>

Connector No.: M37
Connector Name: A/C AUTO AMP.
Connector Color: WHITE

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Color of Wire</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>CAN-H</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>CAN-L</td>
</tr>
</tbody>
</table>

Revision: August 2012
LAN-31
2012 Maxima
1. ABS actuator and electric unit (control unit) E26
2. TCM F15
3. ECM E10
4. IPDM E/R E17
5. BCM M19
6. Combination meter M24
7. Data link connector M22
8. Steering angle sensor M53
9. Driver seat control unit B203
10. Air bag diagnosis sensor unit M35
11. A/C auto amp. M37
12. AV control unit
 M156: Without navigation system
 M163: With navigation system
MALFUNCTION AREA CHART

Main Line

<table>
<thead>
<tr>
<th>Malfunction area</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main line between driver seat control unit and data link connector</td>
<td>LAN-38, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Main line between data link connector and A/C auto amp.</td>
<td>LAN-39, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Main line between A/C auto amp. and ABS actuator and electric unit (control unit)</td>
<td>LAN-40, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Main line between A/C auto amp. and air bag diagnosis sensor unit</td>
<td>LAN-41, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Main line between air bag diagnosis sensor unit and ABS actuator and electric unit (control unit)</td>
<td>LAN-42, "Diagnosis Procedure"</td>
</tr>
</tbody>
</table>

Branch Line

<table>
<thead>
<tr>
<th>Malfunction area</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM branch line circuit</td>
<td>LAN-43, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Driver seat control unit branch line circuit</td>
<td>LAN-44, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>BCM branch line circuit</td>
<td>LAN-45, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Data link connector branch line circuit</td>
<td>LAN-46, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Combination meter branch line circuit</td>
<td>LAN-47, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>AV control unit branch line circuit</td>
<td>LAN-48, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>A/C auto amp. branch line circuit</td>
<td>LAN-49, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Steering angle sensor branch line circuit</td>
<td>LAN-50, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>Air bag diagnosis sensor unit branch line circuit</td>
<td>LAN-51, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>ABS actuator and electric unit (control unit) branch line circuit</td>
<td>LAN-52, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>TCM branch line circuit</td>
<td>LAN-53, "Diagnosis Procedure"</td>
</tr>
<tr>
<td>IPDM E/R branch line circuit</td>
<td>LAN-54, "Diagnosis Procedure"</td>
</tr>
</tbody>
</table>

Short Circuit

<table>
<thead>
<tr>
<th>Malfunction area</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN communication circuit</td>
<td>LAN-55, "Diagnosis Procedure"</td>
</tr>
</tbody>
</table>
MAIN LINE BETWEEN ADP AND DLC CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector B1
 - Harness connector M6

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - Harness connectors B208 and B32
 - Harness connectors B1 and M6
2. Check the continuity between the harness connectors.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>B32</td>
<td>9</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair the main line between the harness connectors B32 and B1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

Check the continuity between the harness connector and the data link connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Data link connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>15J</td>
<td>M22</td>
</tr>
<tr>
<td></td>
<td>16J</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the driver seat control unit and the data link connector.
NO >> Repair the main line between the harness connector M6 and the data link connector.
MAIN LINE BETWEEN DLC AND HVAC CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

MAIN LINE BETWEEN DLC AND HVAC CIRCUIT

Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - ECM
 - A/C auto amp.
4. Check the continuity between the data link connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>A/C auto amp. harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>M37</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the data link connector and the A/C auto amp.
NO >> Repair the main line between the data link connector and the A/C auto amp.
MAIN LINE BETWEEN HVAC AND ABS CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES >> GO TO 3.
NO >> Repair the main line between the A/C auto amp. and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30</td>
<td>15G</td>
<td>E26</td>
</tr>
<tr>
<td></td>
<td>8G</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the A/C auto amp. and the ABS actuator and electric unit (control unit).
NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
4. Check the continuity between the harness connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the A/C auto amp. and the air bag diagnosis sensor unit.

NO >> Repair the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

MAIN LINE BETWEEN A-BAG AND ABS CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

A/C auto amp. harness connector	Harness connector	Continuity
Connector No. | Terminal No. | Connector No. | Terminal No. | Existed
M37 | 1 | M1 | 15G | Existed
 | 2 | | 8G | Existed

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair the main line between the air bag diagnosis sensor unit and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

Harness connector	ABS actuator and electric unit (control unit) harness connector	Continuity
Connector No. | Terminal No. | Connector No. | Terminal No. | Existed
E30 | 15G | E26 | 26 | Existed
 | 8G | | 15 | Existed

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the air bag diagnosis sensor unit and the ABS actuator and electric unit (control unit).
NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Models without automatic drive positioner
 • ECM
 • Harness connector E30
 • Harness connector M1
 - Models with automatic drive positioner
 • ECM
 • Harness connector E29
 • Harness connector B10

Is the inspection result normal?
- YES >> GO TO 2.
- NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ECM.
2. Check the resistance between the ECM harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10</td>
<td>98</td>
<td>97</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
- YES >> GO TO 3.
- NO >> Repair the ECM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ECM. Refer to EC-155, "Diagnosis Procedure".

Is the inspection result normal?
- YES (Present error)>>Replace the ECM. Refer to EC-17, "ADDITIONAL SERVICE WHEN REPLACING CONTROL UNIT : Description".
- YES (Past error)>>Error was detected in the ECM branch line.
- NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Driver seat control unit
 - Harness connector B208
 - Harness connector B32

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of driver seat control unit.
2. Check the resistance between the driver seat control unit harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B203</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the driver seat control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the driver seat control unit. Refer to ADP-48, "DRIVER SEAT CONTROL UNIT : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>> Replace the driver seat control unit. Refer to ADP-171, "Removal and Installation".
YES (Past error)>> Error was detected in the driver seat control unit branch line.
NO >> Repair the power supply and the ground circuit.
BCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the BCM for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of BCM.
2. Check the resistance between the BCM harness connector terminals.

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the BCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the BCM. Refer to BCS-36, "Diagnosis Procedure".

Is the inspection result normal?
YES (Present error)>>Replace the BCM. Refer to BCS-80, "Removal and Installation".
YES (Past error)>>Error was detected in the BCM branch line.
NO >> Repair the power supply and the ground circuit.
DLC BRANCH LINE CIRCUIT

DLC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the data link connector for damage, bend and loose connection (connector side and harness side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

Check the resistance between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the data link connector branch line circuit.
NO >> Repair the data link connector branch line.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the combination meter for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of combination meter.
2. Check the resistance between the combination meter harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the combination meter branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the combination meter. Refer to MWI-37, "COMBINATION METER : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the combination meter. Refer to MWI-121, "Removal and Installation".
YES (Past error)>>Error was detected in the combination meter branch line.
NO >> Repair the power supply and the ground circuit.
AV BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the AV control unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of AV control unit.
2. Check the resistance between the AV control unit harness connector terminals.
 - Models without navigation system
 - Models with navigation system

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M156</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the AV control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the AV control unit. Refer to the following.
- Models with BOSE audio with color display: AV-232, "AV CONTROL UNIT : Diagnosis Procedure"
- Models with BOSE audio with color display with navigation system: AV-412, "AV CONTROL UNIT : Diagnosis Procedure"

Is the inspection result normal?

YES (Present error)>>Replace the AV control unit. Refer to the following.
 - Models with BOSE audio with color display: AV-322, "Removal and Installation"
 - Models with BOSE audio with color display with navigation system: AV-490, "Removal and Installation"

YES (Past error)>>Error was detected in the AV control unit branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the A/C auto amp. for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of A/C auto amp.
2. Check the resistance between the A/C auto amp. harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the A/C auto amp. branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the A/C auto amp. Refer to the following.
• Models with color display: HAC-60, "A/C AUTO AMP : Diagnosis Procedure"
• Models with monochrome display: HAC-168, "A/C AUTO AMP : Diagnosis Procedure"

Is the inspection result normal?
YES (Present error)>>Replace the A/C auto amp. Refer to the following.
 • Models with color display: HAC-104, "Removal and Installation"
 • Models monochrome display: HAC-211, "Removal and Installation"
YES (Past error)>>Error was detected in the A/C auto amp. branch line.
NO >> Repair the power supply and the ground circuit.
< DTC/CIRCUIT DIAGNOSIS >

STRG BRANCH LINE CIRCUIT

Diagnosis Procedure

1. **CHECK CONNECTOR**

 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the terminals and connectors of the steering angle sensor for damage, bend and loose connection (unit side and connector side).

 Is the inspection result normal?

 YES >> GO TO 2.
 NO >> Repair the terminal and connector.

2. **CHECK HARNESS FOR OPEN CIRCUIT**

 1. Disconnect the connector of steering angle sensor.
 2. Check the resistance between the steering angle sensor harness connector terminals.

 Is the measurement value within the specification?

 YES >> GO TO 3.
 NO >> Repair the steering angle sensor branch line.

3. **CHECK POWER SUPPLY AND GROUND CIRCUIT**

 Check the power supply and the ground circuit of the steering angle sensor. Refer to BRC-85, "Wiring Diagram".

 Is the inspection result normal?

 YES (Present error)>>Replace the steering angle sensor. Refer to BRC-109, "Removal and Installation".
 YES (Past error)>>Error was detected in the steering angle sensor branch line.
 NO >> Repair the power supply and the ground circuit.

<table>
<thead>
<tr>
<th>Steering angle sensor harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M53</td>
<td>5</td>
</tr>
</tbody>
</table>
A-BAG BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

A-BAG BRANCH LINE CIRCUIT

Diagnosis Procedure

WARNING:
Always observe the following items for preventing accidental activation.
• Before servicing, turn ignition switch OFF, disconnect battery negative terminal, and wait 3 minutes or more. (To discharge backup capacitor.)
• Never use unspecified tester or other measuring device.

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the air bag diagnosis sensor unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Replace the main harness.

2. CHECK AIR BAG DIAGNOSIS SENSOR UNIT

Check the air bag diagnosis sensor unit. Refer to SRC-3, "Work Flow".

Is the inspection result normal?
YES >> Replace the main harness.
NO >> Replace parts whose air bag system has a malfunction.
ABS BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the ABS actuator and electric unit (control unit) for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the resistance between the ABS actuator and electric unit (control unit) harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E26</td>
<td>26</td>
<td>15</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the ABS actuator and electric unit (control unit) branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ABS actuator and electric unit (control unit). Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?
YES (Present error)>>Replace the ABS actuator and electric unit (control unit). Refer to BRC-106, "Exploded View".
YES (Past error)>>Error was detected in the ABS actuator and electric unit (control unit) branch line.
NO >> Repair the power supply and the ground circuit.
< DTC/CIRCUIT DIAGNOSIS >

TCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - TCM
 - Harness connector F1
 - Harness connector E3

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of TCM.
2. Check the resistance between the TCM harness connector terminals.

<table>
<thead>
<tr>
<th>TCM harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>F15</td>
<td>32</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the TCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the TCM. Refer to TM-120, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the TCM. Refer to TM-162, "Exploded View".
YES (Past error)>>Error was detected in the TCM branch line.
NO >> Repair the power supply and the ground circuit.
IPDM-E BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

DIAGNOSIS PROCEDURE

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the IPDM E/R for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of IPDM E/R.
2. Check the resistance between the IPDM E/R harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the IPDM E/R branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the IPDM E/R. Refer to PCS-18, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the IPDM E/R. Refer to PCS-35, "Removal and Installation".
YES (Past error)>>Error was detected in the IPDM E/R branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. CONNECTOR INSPECTION

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect all the unit connectors on CAN communication system.
4. Check terminals and connectors for damage, bend and loose connection.

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector terminals.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M22</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Check the harness and repair the root cause.

3. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector and the ground.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
<td></td>
</tr>
<tr>
<td>M22</td>
<td>6</td>
<td>Not existed</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Not existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 4.
NO >> Check the harness and repair the root cause.

4. CHECK ECM AND IPDM E/R TERMINATION CIRCUIT

1. Remove the ECM and the IPDM E/R.
2. Check the resistance between the ECM terminals.

<table>
<thead>
<tr>
<th>ECM</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td>98</td>
</tr>
</tbody>
</table>

3. Check the resistance between the IPDM E/R terminals.

<table>
<thead>
<tr>
<th>IPDM E/R</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td>40</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 5.
NO >> Replace the ECM and/or the IPDM E/R.

5. CHECK SYMPTOM

Connect all the connectors. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
< DTC/CIRCUIT DIAGNOSIS >

CAN COMMUNICATION CIRCUIT

[CAN]

Inspection result
Reproduced>>GO TO 6.
Non-reproduced>>Start the diagnosis again. Follow the trouble diagnosis procedure when past error is detected.

6. CHECK UNIT REPRODUCTION

Perform the reproduction test as per the following procedure for each unit.
1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect one of the unit connectors of CAN communication system.
 NOTE:
 ECM and IPDM E/R have a termination circuit. Check other units first.
4. Connect the battery cable to the negative terminal. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
 NOTE:
 Although unit-related error symptoms occur, do not confuse them with other symptoms.

Inspection result
Reproduced>>Connect the connector. Check other units as per the above procedure.
Non-reproduced>>Replace the unit whose connector was disconnected.
DIAGNOSIS PROCEDURE

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - ECM
 - A/C auto amp.
4. Check the continuity between the data link connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>A/C auto amp. harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>M37</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the data link connector and the A/C auto amp.
NO >> Repair the main line between the data link connector and the A/C auto amp.
Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
4. Check the continuity between the harness connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

- **YES** (Present error)>>Check CAN system type decision again.
- **YES** (Past error)>>Error was detected in the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
- **NO** >> Repair the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair the main line between the air bag diagnosis sensor unit and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30</td>
<td>15G</td>
<td>E26</td>
</tr>
<tr>
<td></td>
<td>8G</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the air bag diagnosis sensor unit and the ABS actuator and electric unit (control unit).
NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Models without automatic drive positioner
 • ECM
 • Harness connector E30
 • Harness connector M1
 - Models with automatic drive positioner
 • ECM
 • Harness connector E29
 • Harness connector B10

Is the inspection result normal?

| YES | >> GO TO 2. |
| NO | >> Repair the terminal and connector. |

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ECM.
2. Check the resistance between the ECM harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10</td>
<td>98</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 108 – 132</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

| YES | >> GO TO 3. |
| NO | >> Repair the ECM branch line. |

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ECM. Refer to EC-155, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)	>> Replace the ECM. Refer to EC-17, "ADDITIONAL SERVICE WHEN REPLACING CONTROL UNIT : Description".
YES (Past error)	>> Error was detected in the ECM branch line.
NO	>> Repair the power supply and the ground circuit.
BCM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 1)]

BCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the BCM for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.

NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of BCM.
2. Check the resistance between the BCM harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.

NO >> Repair the BCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the BCM. Refer to BCS-36, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the BCM. Refer to BCS-80, "Removal and Installation".

YES (Past error)>>Error was detected in the BCM branch line.

NO >> Repair the power supply and the ground circuit.

<table>
<thead>
<tr>
<th>BCM harness connector</th>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M19</td>
<td>79</td>
<td>78</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>
DIAGNOSIS PROCEDURE

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the data link connector for damage, bend and loose connection (connector side and harness side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

Check the resistance between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the data link connector branch line circuit.
NO >> Repair the data link connector branch line.
1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the combination meter for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of combination meter.
2. Check the resistance between the combination meter harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the combination meter branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the combination meter. Refer to MWI-37, "COMBINATION METER : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the combination meter. Refer to MWI-121, "Removal and Installation".
YES (Past error)>>Error was detected in the combination meter branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. **CHECK CONNECTOR**

 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the terminals and connectors of the A/C auto amp. for damage, bend and loose connection (unit side and connector side).

 Is the inspection result normal?
 - **YES** >> GO TO 2.
 - **NO** >> Repair the terminal and connector.

2. **CHECK HARNESS FOR OPEN CIRCUIT**

 1. Disconnect the connector of A/C auto amp.
 2. Check the resistance between the A/C auto amp. harness connector terminals.

 Is the measurement value within the specification?
 - **YES** >> GO TO 3.
 - **NO** >> Repair the A/C auto amp. branch line.

3. **CHECK POWER SUPPLY AND GROUND CIRCUIT**

 Check the power supply and the ground circuit of the A/C auto amp. Refer to the following.
 - Models with color display: HAC-60, "A/C AUTO AMP. : Diagnosis Procedure"
 - Models with monochrome display: HAC-168, "A/C AUTO AMP. : Diagnosis Procedure"

 Is the inspection result normal?
 - **YES (Present error)>>**Replace the A/C auto amp. Refer to the following.
 - Models with color display: HAC-104, "Removal and Installation"
 - Models monochrome display: HAC-211, "Removal and Installation"
 - **YES (Past error)>>**Error was detected in the A/C auto amp. branch line.
 - **NO** >> Repair the power supply and the ground circuit.

A/C auto amp. harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>Approx. 54 – 66</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the steering angle sensor for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of steering angle sensor.
2. Check the resistance between the steering angle sensor harness connector terminals.

<table>
<thead>
<tr>
<th>Steering angle sensor harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M53</td>
<td>5</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the steering angle sensor branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the steering angle sensor. Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the steering angle sensor. Refer to BRC-109, "Removal and Installation".
YES (Past error)>>Error was detected in the steering angle sensor branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

WARNING:
Always observe the following items for preventing accidental activation.
• Before servicing, turn ignition switch OFF, disconnect battery negative terminal, and wait 3 minutes or more. (To discharge backup capacitor.)
• Never use unspecified tester or other measuring device.

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the air bag diagnosis sensor unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Replace the main harness.

2. CHECK AIR BAG DIAGNOSIS SENSOR UNIT

Check the air bag diagnosis sensor unit. Refer to SRC-3, "Work Flow".

Is the inspection result normal?
YES >> Replace the main harness.
NO >> Replace parts whose air bag system has a malfunction.
ABS BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the ABS actuator and electric unit (control unit) for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the resistance between the ABS actuator and electric unit (control unit) harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the ABS actuator and electric unit (control unit) branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ABS actuator and electric unit (control unit). Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the ABS actuator and electric unit (control unit). Refer to BRC-106, "Exploded View".
YES (Past error)>>Error was detected in the ABS actuator and electric unit (control unit) branch line.
NO >> Repair the power supply and the ground circuit.

ABS actuator and electric unit (control unit) harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E26</td>
<td>26</td>
<td>15</td>
</tr>
</tbody>
</table>

Approx. 54 – 66

Revision: August 2012
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - TCM
 - Harness connector F1
 - Harness connector E3

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of TCM.
2. Check the resistance between the TCM harness connector terminals.

<table>
<thead>
<tr>
<th>TCM harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F15 32 31</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the TCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the TCM. Refer to TM-120, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the TCM. Refer to TM-162, "Exploded View".
YES (Past error)>>Error was detected in the TCM branch line.
NO >> Repair the power supply and the ground circuit.
IPDM-E BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 1)]

IPDM-E BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the IPDM E/R for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of IPDM E/R.
2. Check the resistance between the IPDM E/R harness connector terminals.

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the IPDM E/R branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the IPDM E/R. Refer to PCS-18, "Diagnosis Procedure".

Is the inspection result normal?
YES (Present error)>>Replace the IPDM E/R. Refer to PCS-35, "Removal and Installation".
YES (Past error)>>Error was detected in the IPDM E/R branch line.
NO >> Repair the power supply and the ground circuit.

IPDM E/R harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

Approx. 108 – 132
CAN COMMUNICATION CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

< CAN COMMUNICATION CIRCUIT >

Diagnosis Procedure

1. CONNECTOR INSPECTION

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect all the unit connectors on CAN communication system.
4. Check terminals and connectors for damage, bend and loose connection.

Is the inspection result normal?

- YES >> GO TO 2.
- NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

- YES >> GO TO 3.
- NO >> Check the harness and repair the root cause.

3. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector and the ground.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

- YES >> GO TO 4.
- NO >> Check the harness and repair the root cause.

4. CHECK ECM AND IPDM E/R TERMINATION CIRCUIT

1. Remove the ECM and the IPDM E/R.
2. Check the resistance between the ECM terminals.

<table>
<thead>
<tr>
<th>ECM</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Approx. 108 – 132</td>
</tr>
</tbody>
</table>

3. Check the resistance between the IPDM E/R terminals.

<table>
<thead>
<tr>
<th>IPDM E/R</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Approx. 108 – 132</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

- YES >> GO TO 5.
- NO >> Replace the ECM and/or the IPDM E/R.

5. CHECK SYMPTOM

Connect all the connectors. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
Inspection result

Reproduced>>GO TO 6.
Non-reproduced>>Start the diagnosis again. Follow the trouble diagnosis procedure when past error is detected.

6. CHECK UNIT REPRODUCTION

Perform the reproduction test as per the following procedure for each unit.
1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect one of the unit connectors of CAN communication system.
 NOTE:
 ECM and IPDM E/R have a termination circuit. Check other units first.
4. Connect the battery cable to the negative terminal. Check if the symptoms described in the "Symptom (Results from interview with customer)" are reproduced.
 NOTE:
 Although unit-related error symptoms occur, do not confuse them with other symptoms.

Inspection result

Reproduced>>Connect the connector. Check other units as per the above procedure.
Non-reproduced>>Replace the unit whose connector was disconnected.
DTC/CIRCUIT DIAGNOSIS
MAIN LINE BETWEEN ADP AND DLC CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector B1
 - Harness connector M6

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - Harness connectors B208 and B32
 - Harness connectors B1 and M6
2. Check the continuity between the harness connectors.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>B32</td>
<td>9</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES >> GO TO 3.
NO >> Repair the main line between the harness connectors B32 and B1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

Check the continuity between the harness connector and the data link connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Data link connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>15J</td>
<td>M22</td>
</tr>
<tr>
<td></td>
<td>16J</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the driver seat control unit and the data link connector.
NO >> Repair the main line between the harness connector M6 and the data link connector.
Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - ECM
 - A/C auto amp.
4. Check the continuity between the data link connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>A/C auto amp. harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>M37</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the data link connector and the A/C auto amp.
NO >> Repair the main line between the data link connector and the A/C auto amp.
MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 2)]

MAIN LINE BETWEEN HVAC AND A-BAG CIRCUIT

Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
4. Check the continuity between the harness connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
NO >> Repair the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair the main line between the air bag diagnosis sensor unit and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30</td>
<td>15G</td>
<td>E26</td>
</tr>
<tr>
<td></td>
<td>8G</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the air bag diagnosis sensor unit and the ABS actuator and electric unit (control unit).
NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
ECM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

ECM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Models without automatic drive positioner
 • ECM
 • Harness connector E30
 • Harness connector M1
 - Models with automatic drive positioner
 • ECM
 • Harness connector E29
 • Harness connector B10

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ECM.
2. Check the resistance between the ECM harness connector terminals.

<table>
<thead>
<tr>
<th>ECM harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>E10</td>
<td>98</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the ECM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ECM. Refer to EC-155, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the ECM. Refer to EC-17, "ADDITIONAL SERVICE WHEN REPLACING CONTROL UNIT : Description".
YES (Past error)>>Error was detected in the ECM branch line.
NO >> Repair the power supply and the ground circuit.
ADP BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR
 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the following terminals and connectors for damage, bend and loose connection (unit side and con-
 nector side).
 - Driver seat control unit
 - Harness connector B208
 - Harness connector B32

 Is the inspection result normal?
 YES >> GO TO 2.
 NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT
 1. Disconnect the connector of driver seat control unit.
 2. Check the resistance between the driver seat control unit harness connector terminals.

<table>
<thead>
<tr>
<th>Driver seat control unit harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>B203</td>
<td>16</td>
</tr>
</tbody>
</table>

 Is the measurement value within the specification?
 YES >> GO TO 3.
 NO >> Repair the driver seat control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

 Check the power supply and the ground circuit of the driver seat control unit. Refer to ADP-48, "DRIVER SEAT
 CONTROL UNIT : Diagnosis Procedure".

 Is the inspection result normal?
 YES (Present error)>>Replace the driver seat control unit. Refer to ADP-171, "Removal and Installation".
 YES (Past error)>>Error was detected in the driver seat control unit branch line.
 NO >> Repair the power supply and the ground circuit.
BCM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 2)]

BCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the BCM for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of BCM.
2. Check the resistance between the BCM harness connector terminals.

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the BCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the BCM. Refer to BCS-36, "Diagnosis Procedure".

Is the inspection result normal?
YES (Present error)>>Replace the BCM. Refer to BCS-80, "Removal and Installation".
YES (Past error)>>Error was detected in the BCM branch line.
NO >> Repair the power supply and the ground circuit.
DLC BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

DLC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the data link connector for damage, bend and loose connection (connector side and harness side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

Check the resistance between the data link connector terminals.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M22</td>
<td>6</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the data link connector branch line circuit.
NO >> Repair the data link connector branch line.
M&A BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the combination meter for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of combination meter.
2. Check the resistance between the combination meter harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the combination meter branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the combination meter. Refer to MWI-37, "COMBINATION METER : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the combination meter. Refer to MWI-121, "Removal and Installation".
YES (Past error)>>Error was detected in the combination meter branch line.
NO >> Repair the power supply and the ground circuit.

Combination meter harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

Revision: August 2012
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the A/C auto amp. for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of A/C auto amp.
2. Check the resistance between the A/C auto amp. harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Approx. 54 – 66

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the A/C auto amp. branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the A/C auto amp. Refer to the following.

- Models with color display: HAC-60, "A/C AUTO AMP. : Diagnosis Procedure"
- Models with monochrome display: HAC-168, "A/C AUTO AMP. : Diagnosis Procedure"

Is the inspection result normal?

YES (Present error)>>Replace the A/C auto amp. Refer to the following.
- Models with color display: HAC-104, "Removal and Installation"
- Models monochrome display: HAC-211, "Removal and Installation"

YES (Past error)>>Error was detected in the A/C auto amp. branch line.
NO >> Repair the power supply and the ground circuit.
1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the steering angle sensor for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of steering angle sensor.
2. Check the resistance between the steering angle sensor harness connector terminals.

<table>
<thead>
<tr>
<th>Steering angle sensor harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M53</td>
<td>5</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the steering angle sensor branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the steering angle sensor. Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?
YES (Present error)>>Replace the steering angle sensor. Refer to BRC-109, "Removal and Installation".
YES (Past error)>>Error was detected in the steering angle sensor branch line.
NO >> Repair the power supply and the ground circuit.
A-BAG BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

A-BAG BRANCH LINE CIRCUIT

Diagnosis Procedure

WARNING:
Always observe the following items for preventing accidental activation.
• Before servicing, turn ignition switch OFF, disconnect battery negative terminal, and wait 3 minutes or more. (To discharge backup capacitor.)
• Never use unspecified tester or other measuring device.

1. **CHECK CONNECTOR**

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the air bag diagnosis sensor unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Replace the main harness.

2. **CHECK AIR BAG DIAGNOSIS SENSOR UNIT**

Check the air bag diagnosis sensor unit. Refer to SRC-3, "Work Flow".

Is the inspection result normal?

YES >> Replace the main harness.
NO >> Replace parts whose air bag system has a malfunction.
ABS BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 2)]

ABS BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the ABS actuator and electric unit (control unit) for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the resistance between the ABS actuator and electric unit (control unit) harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E26</td>
<td>26</td>
<td>15</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the ABS actuator and electric unit (control unit) branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ABS actuator and electric unit (control unit). Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the ABS actuator and electric unit (control unit). Refer to BRC-106, "Exploded View".

YES (Past error)>>Error was detected in the ABS actuator and electric unit (control unit) branch line.

NO >> Repair the power supply and the ground circuit.
TCM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 2)]

TCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - TCM
 - Harness connector F1
 - Harness connector E3

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of TCM.
2. Check the resistance between the TCM harness connector terminals.

<table>
<thead>
<tr>
<th>TCM harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>F15</td>
<td>32</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the TCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the TCM. Refer to TM-120, "Wiring Diagram".

Is the inspection result normal?
YES (Present error)>>Replace the TCM. Refer to TM-162, "Exploded View".
YES (Past error)>>Error was detected in the TCM branch line.
NO >> Repair the power supply and the ground circuit.
IPDM-E BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 2)]

IPDM-E BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the IPDM E/R for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of IPDM E/R.
2. Check the resistance between the IPDM E/R harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the IPDM E/R branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the IPDM E/R. Refer to PCS-18, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the IPDM E/R. Refer to PCS-35, "Removal and Installation".
YES (Past error)>>Error was detected in the IPDM E/R branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. CONNECTOR INSPECTION

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect all the unit connectors on CAN communication system.
4. Check terminals and connectors for damage, bend and loose connection.

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Check the harness and repair the root cause.

3. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector and the ground.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>Not existed</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Not existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 4.
NO >> Check the harness and repair the root cause.

4. CHECK ECM AND IPDM E/R TERMINATION CIRCUIT

1. Remove the ECM and the IPDM E/R.
2. Check the resistance between the ECM terminals.

<table>
<thead>
<tr>
<th>ECM</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>97</td>
</tr>
<tr>
<td>Approx. 108 – 132</td>
<td></td>
</tr>
</tbody>
</table>

3. Check the resistance between the IPDM E/R terminals.

<table>
<thead>
<tr>
<th>IPDM E/R</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>Approx. 108 – 132</td>
<td></td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 5.
NO >> Replace the ECM and/or the IPDM E/R.

5. CHECK SYMPTOM

Connect all the connectors. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.

Revision: August 2012
6. CHECK UNIT REPRODUCTION

Perform the reproduction test as per the following procedure for each unit.

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect one of the unit connectors of CAN communication system.

 NOTE:

 ECM and IPDM E/R have a termination circuit. Check other units first.

4. Connect the battery cable to the negative terminal. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.

 NOTE:

 Although unit-related error symptoms occur, do not confuse them with other symptoms.

Inspection result

Reproduced>>Connect the connector. Check other units as per the above procedure.
Non-reproduced>>Replace the unit whose connector was disconnected.
DTC/CIRCUIT DIAGNOSIS
MAIN LINE BETWEEN DLC AND HVAC CIRCUIT

Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - ECM
 - A/C auto amp.
4. Check the continuity between the data link connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>A/C auto amp. harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>M37</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error) >> Check CAN system type decision again.
YES (Past error) >> Error was detected in the main line between the data link connector and the A/C auto amp.
NO >> Repair the main line between the data link connector and the A/C auto amp.
Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
4. Check the continuity between the harness connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
NO >> Repair the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
<td>15G</td>
<td>Existed</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>8G</td>
<td>Existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair the main line between the air bag diagnosis sensor unit and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30</td>
<td>15G</td>
<td>E26</td>
</tr>
<tr>
<td></td>
<td>8G</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the air bag diagnosis sensor unit and the ABS actuator and electric unit (control unit).
NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
ECM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Models without automatic drive positioner
 - ECM
 - Harness connector E30
 - Harness connector M1
 - Models with automatic drive positioner
 - ECM
 - Harness connector E29
 - Harness connector B10

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ECM.
2. Check the resistance between the ECM harness connector terminals.

<table>
<thead>
<tr>
<th>ECM harness connector</th>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10</td>
<td>98</td>
<td>97</td>
<td>Approx. 108 – 132</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the ECM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ECM. Refer to EC-155, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the ECM. Refer to EC-17, "ADDITIONAL SERVICE WHEN REPLACING CONTROL UNIT : Description".
YES (Past error)>>Error was detected in the ECM branch line.
NO >> Repair the power supply and the ground circuit.
BCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the BCM for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of BCM.
2. Check the resistance between the BCM harness connector terminals.

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the BCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the BCM. Refer to BCS-36, "Diagnosis Procedure".

Is the inspection result normal?
YES (Present error)>>Replace the BCM. Refer to BCS-80, "Removal and Installation".
YES (Past error)>>Error was detected in the BCM branch line.
NO >> Repair the power supply and the ground circuit.

BCM harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M19</td>
<td>79</td>
<td>78</td>
</tr>
</tbody>
</table>

Approx. 54 – 66
DLC BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

DLC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the data link connector for damage, bend and loose connection (connector side and harness side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

Check the resistance between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the data link connector branch line circuit.
NO >> Repair the data link connector branch line.
M&A BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

M&A BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the combination meter for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of combination meter.
2. Check the resistance between the combination meter harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the combination meter branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the combination meter. Refer to MWI-37, "COMBINATION METER : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the combination meter. Refer to MWI-121, "Removal and Installation".
YES (Past error)>>Error was detected in the combination meter branch line.
NO >> Repair the power supply and the ground circuit.

Combination meter harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

Revision: August 2012
AV BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the AV control unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of AV control unit.
2. Check the resistance between the AV control unit harness connector terminals.
 - Models without navigation system
 - Models with navigation system

<table>
<thead>
<tr>
<th>AV control unit harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M156</td>
<td>86</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the AV control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the AV control unit. Refer to the following.

- Models with BOSE audio with color display: AV-232, "AV CONTROL UNIT : Diagnosis Procedure"
- Models with BOSE audio with color display with navigation system: AV-412, "AV CONTROL UNIT : Diagnosis Procedure"

Is the inspection result normal?

YES (Present error)>>Replace the AV control unit. Refer to the following.
 - Models with BOSE audio with color display: AV-322, "Removal and Installation"
 - Models with BOSE audio with color display with navigation system: AV-490, "Removal and Installation"

YES (Past error)>>Error was detected in the AV control unit branch line.
NO >> Repair the power supply and the ground circuit.
1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the A/C auto amp. for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of A/C auto amp.
2. Check the resistance between the A/C auto amp. harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the A/C auto amp. branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the A/C auto amp. Refer to the following.
• Models with color display: HAC-60, "A/C AUTO AMP : Diagnosis Procedure"
• Models with monochrome display: HAC-168, "A/C AUTO AMP: Diagnosis Procedure"

Is the inspection result normal?
YES (Present error)>> Replace the A/C auto amp. Refer to the following.
• Models with color display: HAC-104, "Removal and Installation"
• Models monochrome display: HAC-211, "Removal and Installation"
YES (Past error)>> Error was detected in the A/C auto amp. branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. **CHECK CONNECTOR**

 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the terminals and connectors of the steering angle sensor for damage, bend and loose connection (unit side and connector side).

 Is the inspection result normal?

 YES >> GO TO 2.

 NO >> Repair the terminal and connector.

2. **CHECK HARNESS FOR OPEN CIRCUIT**

 1. Disconnect the connector of steering angle sensor.
 2. Check the resistance between the steering angle sensor harness connector terminals.

 Is the measurement value within the specification?

 YES >> GO TO 3.

 NO >> Repair the steering angle sensor branch line.

3. **CHECK POWER SUPPLY AND GROUND CIRCUIT**

 Check the power supply and the ground circuit of the steering angle sensor. Refer to BRC-85, "Wiring Diagram".

 Is the inspection result normal?

 YES (Present error)>>Replace the steering angle sensor. Refer to BRC-109, "Removal and Installation".

 YES (Past error)>>Error was detected in the steering angle sensor branch line.

 NO >> Repair the power supply and the ground circuit.
A-BAG BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

A-BAG BRANCH LINE CIRCUIT

Diagnosis Procedure

WARNING:
Always observe the following items for preventing accidental activation.
• Before servicing, turn ignition switch OFF, disconnect battery negative terminal, and wait 3 minutes or more. (To discharge backup capacitor.)
• Never use unspecified tester or other measuring device.

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the air bag diagnosis sensor unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Replace the main harness.

2. CHECK AIR BAG DIAGNOSIS SENSOR UNIT

Check the air bag diagnosis sensor unit. Refer to SRC-3, "Work Flow".

Is the inspection result normal?

YES >> Replace the main harness.
NO >> Replace parts whose air bag system has a malfunction.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the ABS actuator and electric unit (control unit) for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the resistance between the ABS actuator and electric unit (control unit) harness connector terminals.

<table>
<thead>
<tr>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the ABS actuator and electric unit (control unit) branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ABS actuator and electric unit (control unit). Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?
YES (Present error)>>Replace the ABS actuator and electric unit (control unit). Refer to BRC-106, "Exploded View".
YES (Past error)>>Error was detected in the ABS actuator and electric unit (control unit) branch line.
NO >> Repair the power supply and the ground circuit.
1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - TCM
 - Harness connector F1
 - Harness connector E3

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of TCM.
2. Check the resistance between the TCM harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F15</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the TCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the TCM. Refer to TM-120, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the TCM. Refer to TM-162, "Exploded View".
YES (Past error)>>Error was detected in the TCM branch line.
NO >> Repair the power supply and the ground circuit.
IPDM-E BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

IPDM-E BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the IPDM E/R for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of IPDM E/R.
2. Check the resistance between the IPDM E/R harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the IPDM E/R branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the IPDM E/R. Refer to PCS-18, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the IPDM E/R. Refer to PCS-35, "Removal and Installation".
YES (Past error)>>Error was detected in the IPDM E/R branch line.
NO >> Repair the power supply and the ground circuit.
< DTC/CIRCUIT DIAGNOSIS >

CAN COMMUNICATION CIRCUIT

Diagnosis Procedure

1. CONNECTOR INSPECTION

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect all the unit connectors on CAN communication system.
4. Check terminals and connectors for damage, bend and loose connection.

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Check the harness and repair the root cause.

3. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector and the ground.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
<td>Not existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 4.
NO >> Check the harness and repair the root cause.

4. CHECK ECM AND IPDM E/R TERMINATION CIRCUIT

1. Remove the ECM and the IPDM E/R.
2. Check the resistance between the ECM terminals.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Approx. 108 – 132</td>
</tr>
<tr>
<td>97</td>
<td></td>
</tr>
</tbody>
</table>

3. Check the resistance between the IPDM E/R terminals.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Approx. 108 – 132</td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 5.
NO >> Replace the ECM and/or the IPDM E/R.

5. CHECK SYMPTOM

Connect all the connectors. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
6. CHECK UNIT REPRODUCTION

Perform the reproduction test as per the following procedure for each unit.
1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect one of the unit connectors of CAN communication system.
 NOTE:
 ECM and IPDM E/R have a termination circuit. Check other units first.
4. Connect the battery cable to the negative terminal. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
 NOTE:
 Although unit-related error symptoms occur, do not confuse them with other symptoms.

Inspection result
Reproduced>>Connect the connector. Check other units as per the above procedure.
Non-reproduced>>Replace the unit whose connector was disconnected.
DTC/CIRCUIT DIAGNOSIS

MAIN LINE BETWEEN ADP AND DLC CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector B1
 - Harness connector M6

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - Harness connectors B208 and B32
 - Harness connectors B1 and M6
2. Check the continuity between the harness connectors.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>B32</td>
<td>9</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES >> GO TO 3.
NO >> Repair the main line between the harness connectors B32 and B1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

Check the continuity between the harness connector and the data link connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Data link connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>15J</td>
<td>M22</td>
</tr>
<tr>
<td></td>
<td>16J</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the driver seat control unit and the data link connector.
NO >> Repair the main line between the harness connector M6 and the data link connector.
Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - ECM
 - A/C auto amp.
4. Check the continuity between the data link connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>A/C auto amp. harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>M37</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the data link connector and the A/C auto amp.
NO >> Repair the main line between the data link connector and the A/C auto amp.
Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
4. Check the continuity between the harness connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
NO >> Repair the main line between the A/C auto amp. and the air bag diagnosis sensor unit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td>2</td>
<td>8G</td>
<td>Existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair the main line between the air bag diagnosis sensor unit and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30</td>
<td>15G</td>
<td>E26</td>
</tr>
<tr>
<td>8G</td>
<td>15</td>
<td>Existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the air bag diagnosis sensor unit and the ABS actuator and electric unit (control unit).
NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
ECM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR
 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Models without automatic drive positioner
 • ECM
 • Harness connector E30
 • Harness connector M1
 - Models with automatic drive positioner
 • ECM
 • Harness connector E29
 • Harness connector B10
 Is the inspection result normal?
 YES >> GO TO 2.
 NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT
 1. Disconnect the connector of ECM.
 2. Check the resistance between the ECM harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10</td>
<td>98</td>
<td>97</td>
</tr>
</tbody>
</table>

 Is the measurement value within the specification?
 YES >> GO TO 3.
 NO >> Repair the ECM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT
 Check the power supply and the ground circuit of the ECM. Refer to EC-155, "Diagnosis Procedure".
 Is the inspection result normal?
 YES (Present error)>>Replace the ECM. Refer to EC-17, "ADDITIONAL SERVICE WHEN REPLACING CONTROL UNIT : Description".
 YES (Past error)>>Error was detected in the ECM branch line.
 NO >> Repair the power supply and the ground circuit.
ADP BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Driver seat control unit
 - Harness connector B208
 - Harness connector B32

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of driver seat control unit.
2. Check the resistance between the driver seat control unit harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B203</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the driver seat control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the driver seat control unit. Refer to ADP-48, "DRIVER SEAT CONTROL UNIT : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the driver seat control unit. Refer to ADP-171, "Removal and Installation".
YES (Past error)>>Error was detected in the driver seat control unit branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the BCM for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of BCM.
2. Check the resistance between the BCM harness connector terminals.

<table>
<thead>
<tr>
<th>BCM harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M19</td>
<td>79</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the BCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the BCM. Refer to BCS-36, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the BCM. Refer to BCS-80, "Removal and Installation".
YES (Past error)>>Error was detected in the BCM branch line.
NO >> Repair the power supply and the ground circuit.
DLC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the data link connector for damage, bend and loose connection (connector side and harness side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

Check the resistance between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Approx. 54 – 66

Is the measurement value within the specification?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the data link connector branch line circuit.
NO >> Repair the data link connector branch line.
M&A BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the combination meter for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.

NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of combination meter.
2. Check the resistance between the combination meter harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.

NO >> Repair the combination meter branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the combination meter. Refer to MWI-37, "COMBINATION METER : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the combination meter. Refer to MWI-121, "Removal and Installation".

YES (Past error)>>Error was detected in the combination meter branch line.

NO >> Repair the power supply and the ground circuit.
AV BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the AV control unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of AV control unit.
2. Check the resistance between the AV control unit harness connector terminals.

- Models without navigation system

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M156</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the AV control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the AV control unit. Refer to the following.
- Models with BOSE audio with color display: AV-232, "AV CONTROL UNIT : Diagnosis Procedure"
- Models with BOSE audio with color display with navigation system: AV-412, "AV CONTROL UNIT : Diagnosis Procedure"

Is the inspection result normal?

YES (Present error)>>Replace the AV control unit. Refer to the following.
 - Models with BOSE audio with color display: AV-322, "Removal and Installation"
 - Models with BOSE audio with color display with navigation system: AV-490, "Removal and Installation"

YES (Past error)>>Error was detected in the AV control unit branch line.
NO >> Repair the power supply and the ground circuit.

AV control unit harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M163</td>
<td>62</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the AV control unit branch line.
HVAC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the A/C auto amp. for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of A/C auto amp.
2. Check the resistance between the A/C auto amp. harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the A/C auto amp. branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the A/C auto amp. Refer to the following.

• Models with color display: HAC-60, "A/C AUTO AMP: Diagnosis Procedure"
• Models with monochrome display: HAC-168, "A/C AUTO AMP: Diagnosis Procedure"

Is the inspection result normal?

YES (Present error) >> Replace the A/C auto amp. Refer to the following.

• Models with color display: HAC-104, "Removal and Installation"
• Models monochrome display: HAC-211, "Removal and Installation"

YES (Past error) >> Error was detected in the A/C auto amp. branch line.
NO >> Repair the power supply and the ground circuit.
< DTC/CIRCUIT DIAGNOSIS >

STRG BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the steering angle sensor for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of steering angle sensor.
2. Check the resistance between the steering angle sensor harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the steering angle sensor branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the steering angle sensor. Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the steering angle sensor. Refer to BRC-109, "Removal and Installation".
YES (Past error)>>Error was detected in the steering angle sensor branch line.
NO >> Repair the power supply and the ground circuit.

<table>
<thead>
<tr>
<th>Steering angle sensor harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M53</td>
<td>5</td>
</tr>
</tbody>
</table>
WARNING:
Always observe the following items for preventing accidental activation.
• Before servicing, turn ignition switch OFF, disconnect battery negative terminal, and wait 3 minutes or more. (To discharge backup capacitor.)
• Never use unspecified tester or other measuring device.

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the air bag diagnosis sensor unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Replace the main harness.

2. CHECK AIR BAG DIAGNOSIS SENSOR UNIT

Check the air bag diagnosis sensor unit. Refer to SRC-3, "Work Flow".
Is the inspection result normal?
YES >> Replace the main harness.
NO >> Replace parts whose air bag system has a malfunction.
ABS BRANCH LINE CIRCUIT

 Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the ABS actuator and electric unit (control unit) for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the resistance between the ABS actuator and electric unit (control unit) harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the ABS actuator and electric unit (control unit) branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ABS actuator and electric unit (control unit). Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the ABS actuator and electric unit (control unit). Refer to BRC-106, "Exploded View".
YES (Past error)>>Error was detected in the ABS actuator and electric unit (control unit) branch line.
NO >> Repair the power supply and the ground circuit.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E26</td>
<td>26</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Revision: August 2012
TCM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS > [CAN SYSTEM (TYPE 4)]

TCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - TCM
 - Harness connector F1
 - Harness connector E3

Is the inspection result normal?
 YES >> GO TO 2.
 NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of TCM.
2. Check the resistance between the TCM harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F15</td>
<td>32</td>
<td>31</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
 YES >> GO TO 3.
 NO >> Repair the TCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the TCM. Refer to TM-120, "Wiring Diagram".

Is the inspection result normal?
 YES (Present error)>>Replace the TCM. Refer to TM-162, "Exploded View".
 YES (Past error)>>Error was detected in the TCM branch line.
 NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the IPDM E/R for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of IPDM E/R.
2. Check the resistance between the IPDM E/R harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the IPDM E/R branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the IPDM E/R. Refer to PCS-18, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the IPDM E/R. Refer to PCS-35, "Removal and Installation".
YES (Past error)>>Error was detected in the IPDM E/R branch line.
NO >> Repair the power supply and the ground circuit.
CAN COMMUNICATION CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

CAN COMMUNICATION CIRCUIT

Diagnosis Procedure

1. CONNECTOR INSPECTION

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect all the unit connectors on CAN communication system.
4. Check terminals and connectors for damage, bend and loose connection.

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector terminals.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>M22</td>
<td>6</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Check the harness and repair the root cause.

3. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector and the ground.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
<td></td>
</tr>
<tr>
<td>M22</td>
<td>6</td>
<td>Not existed</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Not existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 4.
NO >> Check the harness and repair the root cause.

4. CHECK ECM AND IPDM E/R TERMINATION CIRCUIT

1. Remove the ECM and the IPDM E/R.
2. Check the resistance between the ECM terminals.

<table>
<thead>
<tr>
<th>ECM</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>97</td>
</tr>
</tbody>
</table>

3. Check the resistance between the IPDM E/R terminals.

<table>
<thead>
<tr>
<th>IPDM E/R</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal No.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 5.
NO >> Replace the ECM and/or the IPDM E/R.

5. CHECK SYMPTOM

Connect all the connectors. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.

Revision: August 2012

LAN-121

2012 Maxima
6. CHECK UNIT REPRODUCTION

Perform the reproduction test as per the following procedure for each unit.

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect one of the unit connectors of CAN communication system.
 NOTE:
 ECM and IPDM E/R have a termination circuit. Check other units first.
4. Connect the battery cable to the negative terminal. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
 NOTE:
 Although unit-related error symptoms occur, do not confuse them with other symptoms.

Inspection result
Reproduced>>Connect the connector. Check other units as per the above procedure.
Non-reproduced>>Replace the unit whose connector was disconnected.
DTC/CIRCUIT DIAGNOSIS

MAIN LINE BETWEEN DLC AND HVAC CIRCUIT

Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - ECM
 - A/C auto amp.
4. Check the continuity between the data link connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>A/C auto amp. harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>M37</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?
YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the data link connector and the A/C auto amp.
NO >> Repair the main line between the data link connector and the A/C auto amp.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td>2</td>
<td>8G</td>
<td>Existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Repair the main line between the A/C auto amp. and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30</td>
<td>15G</td>
<td>E26</td>
</tr>
<tr>
<td>8G</td>
<td>15</td>
<td>Existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>> Check CAN system type decision again.
YES (Past error)>> Error was detected in the main line between the A/C auto amp. and the ABS actuator and electric unit (control unit).
NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Models without automatic drive positioner
 • ECM
 • Harness connector E30
 • Harness connector M1
 - Models with automatic drive positioner
 • ECM
 • Harness connector E29
 • Harness connector B10

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ECM.
2. Check the resistance between the ECM harness connector terminals.

<table>
<thead>
<tr>
<th>ECM harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>E10</td>
<td>98</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the ECM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ECM. Refer to EC-155, "Diagnosis Procedure".

Is the inspection result normal?
YES (Present error)>>Replace the ECM. Refer to EC-17, "ADDITIONAL SERVICE WHEN REPLACING CONTROL UNIT : Description".
YES (Past error)>>Error was detected in the ECM branch line.
NO >> Repair the power supply and the ground circuit.
BCM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 5)]

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the BCM for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of BCM.
2. Check the resistance between the BCM harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the BCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the BCM. Refer to BCS-36, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the BCM. Refer to BCS-80, "Removal and Installation".
YES (Past error)>>Error was detected in the BCM branch line.
NO >> Repair the power supply and the ground circuit.

<table>
<thead>
<tr>
<th>BCM harness connector</th>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M19</td>
<td>79</td>
<td>78</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>
DLC BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 5)]

DLC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the data link connector for damage, bend and loose connection (connector side and harness side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

Check the resistance between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the data link connector branch line circuit.
NO >> Repair the data link connector branch line.
M&A BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the combination meter for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of combination meter.
2. Check the resistance between the combination meter harness connector terminals.

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the combination meter branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the combination meter. Refer to MWI-37, "COMBINATION METER : Diagnosis Procedure".

Is the inspection result normal?
YES (Present error)>>Replace the combination meter. Refer to MWI-121, "Removal and Installation".
YES (Past error)>>Error was detected in the combination meter branch line.
NO >> Repair the power supply and the ground circuit.

Combination meter harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

Revision: August 2012

2012 Maxima
HVAC BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

HVAC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the A/C auto amp. for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of A/C auto amp.
2. Check the resistance between the A/C auto amp. harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>A/C auto amp. harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>2</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the A/C auto amp. branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the A/C auto amp. Refer to the following.

- Models with color display: HAC-60, "A/C AUTO AMP : Diagnosis Procedure"
- Models with monochrome display: HAC-168, "A/C AUTO AMP : Diagnosis Procedure"

Is the inspection result normal?

YES (Present error)>>Replace the A/C auto amp. Refer to the following.
- Models with color display: HAC-104, "Removal and Installation"
- Models monochrome display: HAC-211, "Removal and Installation"

YES (Past error)>>Error was detected in the A/C auto amp. branch line.
NO >> Repair the power supply and the ground circuit.
STRG BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the steering angle sensor for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of steering angle sensor.
2. Check the resistance between the steering angle sensor harness connector terminals.

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the steering angle sensor branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the steering angle sensor. Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?
YES (Present error)>> Replace the steering angle sensor. Refer to BRC-109, "Removal and Installation".
YES (Past error)>> Error was detected in the steering angle sensor branch line.
NO >> Repair the power supply and the ground circuit.
ABS BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 5)]

ABS BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the ABS actuator and electric unit (control unit) for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the resistance between the ABS actuator and electric unit (control unit) harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the ABS actuator and electric unit (control unit) branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ABS actuator and electric unit (control unit). Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?

YES (Present error)>>Replace the ABS actuator and electric unit (control unit). Refer to BRC-106, "Exploded View".
YES (Past error)>>Error was detected in the ABS actuator and electric unit (control unit) branch line.
NO >> Repair the power supply and the ground circuit.
TCM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS > [CAN SYSTEM (TYPE 5)]

TCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - TCM
 - Harness connector F1
 - Harness connector E3

Is the inspection result normal?
 YES >> GO TO 2.
 NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of TCM.
2. Check the resistance between the TCM harness connector terminals.

<table>
<thead>
<tr>
<th>TCM harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>F15</td>
<td>32</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
 YES >> GO TO 3.
 NO >> Repair the TCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the TCM. Refer to TM-120, "Wiring Diagram".

Is the inspection result normal?
 YES (Present error)>>Replace the TCM. Refer to TM-162, "Exploded View".
 YES (Past error)>>Error was detected in the TCM branch line.
 NO >> Repair the power supply and the ground circuit.
IPDM-E BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

IPDM-E BRANCH LINE CIRCUIT

Diagnosis Procedure

1. **CHECK CONNECTOR**
 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the terminals and connectors of the IPDM E/R for damage, bend and loose connection (unit side and connector side).

 Is the inspection result normal?
 - YES >> GO TO 2.
 - NO >> Repair the terminal and connector.

2. **CHECK HARNESS FOR OPEN CIRCUIT**
 1. Disconnect the connector of IPDM E/R.
 2. Check the resistance between the IPDM E/R harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

 Is the measurement value within the specification?
 - YES >> GO TO 3.
 - NO >> Repair the IPDM E/R branch line.

3. **CHECK POWER SUPPLY AND GROUND CIRCUIT**
 Check the power supply and the ground circuit of the IPDM E/R. Refer to PCS-18, "Diagnosis Procedure".

 Is the inspection result normal?
 - YES (Present error)>>Replace the IPDM E/R. Refer to PCS-35, "Removal and Installation".
 - YES (Past error)>>Error was detected in the IPDM E/R branch line.
 - NO >> Repair the power supply and the ground circuit.

Revision: August 2012

LAN-133

2012 Maxima
Diagnosis Procedure

1. CONNECTOR INSPECTION

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect all the unit connectors on CAN communication system.
4. Check terminals and connectors for damage, bend and loose connection.

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Check the harness and repair the root cause.

3. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector and the ground.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Ground</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
<td>Not existed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not existed</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 4.
NO >> Check the harness and repair the root cause.

4. CHECK ECM AND IPDM E/R TERMINATION CIRCUIT

1. Remove the ECM and the IPDM E/R.
2. Check the resistance between the ECM terminals.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>97</td>
</tr>
</tbody>
</table>

3. Check the resistance between the IPDM E/R terminals.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 5.
NO >> Replace the ECM and/or the IPDM E/R.

5. CHECK SYMPTOM

Connect all the connectors. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
Inspection result
Reproduced>>GO TO 6.
Non-reproduced>>Start the diagnosis again. Follow the trouble diagnosis procedure when past error is detected.

6. CHECK UNIT REPRODUCTION

Perform the reproduction test as per the following procedure for each unit.
1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect one of the unit connectors of CAN communication system.
 NOTE:
 ECM and IPDM E/R have a termination circuit. Check other units first.
4. Connect the battery cable to the negative terminal. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
 NOTE:
 Although unit-related error symptoms occur, do not confuse them with other symptoms.

Inspection result
Reproduced>>Connect the connector. Check other units as per the above procedure.
Non-reproduced>>Replace the unit whose connector was disconnected.
MAIN LINE BETWEEN ADP AND DLC CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

DTC/CIRCUIT DIAGNOSIS

MAIN LINE BETWEEN ADP AND DLC CIRCUIT

Diagnosis Procedure

1. **CHECK CONNECTOR**

 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector B1
 - Harness connector M6

 Is the inspection result normal?

 YES >> GO TO 2.
 NO >> Repair the terminal and connector.

2. **CHECK HARNESS CONTINUITY (OPEN CIRCUIT)**

 1. Disconnect the following harness connectors.
 - Harness connectors B208 and B32
 - Harness connectors B1 and M6
 2. Check the continuity between the harness connectors.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>B32</td>
<td>9</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

 Is the inspection result normal?

 YES >> GO TO 3.
 NO >> Repair the main line between the harness connectors B32 and B1.

3. **CHECK HARNESS CONTINUITY (OPEN CIRCUIT)**

 Check the continuity between the harness connector and the data link connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>Data link connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>15J</td>
<td>M22</td>
</tr>
<tr>
<td></td>
<td>16J</td>
<td></td>
</tr>
</tbody>
</table>

 Is the inspection result normal?

 YES (Present error)>>Check CAN system type decision again.
 YES (Past error)>>Error was detected in the main line between the driver seat control unit and the data link connector.
 NO >> Repair the main line between the harness connector M6 and the data link connector.
Diagnosis Procedure

1. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect the following harness connectors.
 - ECM
 - A/C auto amp.
4. Check the continuity between the data link connector and the A/C auto amp. harness connector.

<table>
<thead>
<tr>
<th>Data link connector</th>
<th>A/C auto amp. harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>M37</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the main line between the data link connector and the A/C auto amp.
NO >> Repair the main line between the data link connector and the A/C auto amp.
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (connector side and harness side).
 - Harness connector M1
 - Harness connector E30

 Is the inspection result normal?

 YES >> GO TO 2.
 NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the following harness connectors.
 - A/C auto amp.
 - Harness connectors M1 and E30
2. Check the continuity between the A/C auto amp. harness connector and the harness connector.

<table>
<thead>
<tr>
<th>A/C auto amp. harness connector</th>
<th>Harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

 Is the inspection result normal?

 YES >> GO TO 3.
 NO >> Repair the main line between the A/C auto amp. and the harness connector M1.

3. CHECK HARNESS CONTINUITY (OPEN CIRCUIT)

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the continuity between the harness connector and the ABS actuator and electric unit (control unit) harness connector.

<table>
<thead>
<tr>
<th>Harness connector</th>
<th>ABS actuator and electric unit (control unit) harness connector</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30</td>
<td>15G</td>
<td>E26</td>
</tr>
<tr>
<td></td>
<td>8G</td>
<td></td>
</tr>
</tbody>
</table>

 Is the inspection result normal?

 YES (Present error)>>Check CAN system type decision again.
 YES (Past error)>>Error was detected in the main line between the A/C auto amp. and the ABS actuator and electric unit (control unit).
 NO >> Repair the main line between the harness connector E30 and the ABS actuator and electric unit (control unit).
ECM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 6)]

ECM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Models without automatic drive positioner
 • ECM
 • Harness connector E30
 • Harness connector M1
 - Models with automatic drive positioner
 • ECM
 • Harness connector E29
 • Harness connector B10

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ECM.
2. Check the resistance between the ECM harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10</td>
<td>98</td>
<td>97</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the ECM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ECM. Refer to EC-155, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the ECM. Refer to EC-17, "ADDITIONAL SERVICE WHEN REPLACING CONTROL UNIT : Description".
YES (Past error)>>Error was detected in the ECM branch line.
NO >> Repair the power supply and the ground circuit.
ADP BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

ADP BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side).
 - Driver seat control unit
 - Harness connector B208
 - Harness connector B32

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of driver seat control unit.
2. Check the resistance between the driver seat control unit harness connector terminals.

<table>
<thead>
<tr>
<th>Driver seat control unit harness connector</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector No.</td>
<td>Terminal No.</td>
</tr>
<tr>
<td>B203</td>
<td>16 32</td>
</tr>
</tbody>
</table>

Approx. 54 – 66

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the driver seat control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the driver seat control unit. Refer to ADP-48, "DRIVER SEAT CONTROL UNIT : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the driver seat control unit. Refer to ADP-171, "Removal and Installation".
YES (Past error)>>Error was detected in the driver seat control unit branch line.
NO >> Repair the power supply and the ground circuit.
BCM BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

[CAN SYSTEM (TYPE 6)]

BCM BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the BCM for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of BCM.
2. Check the resistance between the BCM harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the BCM branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the BCM. Refer to BCS-36, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the BCM. Refer to BCS-80, "Removal and Installation".
YES (Past error)>>Error was detected in the BCM branch line.
NO >> Repair the power supply and the ground circuit.

BCM harness connector

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M19</td>
<td>79</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>
DLC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the data link connector for damage, bend and loose connection (connector side and harness side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

Check the resistance between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES (Present error)>>Check CAN system type decision again.
YES (Past error)>>Error was detected in the data link connector branch line circuit.
NO >> Repair the data link connector branch line.
M&A BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the combination meter for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of combination meter.
2. Check the resistance between the combination meter harness connector terminals.

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the combination meter branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the combination meter. Refer to MWI-37, "COMBINATION METER : Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the combination meter. Refer to MWI-121, "Removal and Installation".
YES (Past error)>>Error was detected in the combination meter branch line.
NO >> Repair the power supply and the ground circuit.
AV BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the AV control unit for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of AV control unit.
2. Check the resistance between the AV control unit harness connector terminals.

- Models without navigation system

 AV control unit harness connector
<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M156</td>
<td>86</td>
<td>87</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the AV control unit branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the AV control unit. Refer to the following.
• Models with BOSE audio with color display: AV-232, "AV CONTROL UNIT : Diagnosis Procedure"
• Models with BOSE audio with color display with navigation system: AV-412, "AV CONTROL UNIT : Diagnosis Procedure"

Is the inspection result normal?
YES (Present error)>>Replace the AV control unit. Refer to the following.
 • Models with BOSE audio with color display: AV-322, "Removal and Installation"
 • Models with BOSE audio with color display with navigation system: AV-490, "Removal and Installation"

YES (Past error)>>Error was detected in the AV control unit branch line.
NO >> Repair the power supply and the ground circuit.
HVAC BRANCH LINE CIRCUIT

< DTC/CIRCUIT DIAGNOSIS >

HVAC BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the A/C auto amp. for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of A/C auto amp.
2. Check the resistance between the A/C auto amp. harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M37</td>
<td>1</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the A/C auto amp. branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the A/C auto amp. Refer to the following.

• Models with color display: HAC-60, "A/C AUTO AMP : Diagnosis Procedure"
• Models with monochrome display: HAC-168, "A/C AUTO AMP : Diagnosis Procedure"

Is the inspection result normal?

YES (Present error)>> Replace the A/C auto amp. Refer to the following.
• Models with color display: HAC-104, "Removal and Installation"
• Models monochrome display: HAC-211, "Removal and Installation"

YES (Past error)>> Error was detected in the A/C auto amp. branch line.
NO >> Repair the power supply and the ground circuit.
< DTC/CIRCUIT DIAGNOSIS >

STRG BRANCH LINE CIRCUIT

Diagnosis Procedure

1. **CHECK CONNECTOR**

 1. Turn the ignition switch OFF.
 2. Disconnect the battery cable from the negative terminal.
 3. Check the terminals and connectors of the steering angle sensor for damage, bend and loose connection (unit side and connector side).

 Is the inspection result normal?

 YES >> GO TO 2.

 NO >> Repair the terminal and connector.

2. **CHECK HARNESS FOR OPEN CIRCUIT**

 1. Disconnect the connector of steering angle sensor.
 2. Check the resistance between the steering angle sensor harness connector terminals.

 Is the measurement value within the specification?

 YES >> GO TO 3.

 NO >> Repair the steering angle sensor branch line.

3. **CHECK POWER SUPPLY AND GROUND CIRCUIT**

 Check the power supply and the ground circuit of the steering angle sensor. Refer to [BRC-85, "Wiring Diagram"](#).

 Is the inspection result normal?

 YES (Present error)>> Replace the steering angle sensor. Refer to [BRC-109, "Removal and Installation"](#).

 YES (Past error)>> Error was detected in the steering angle sensor branch line.

 NO >> Repair the power supply and the ground circuit.

Steering angle sensor harness connector resistance

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M53</td>
<td>5</td>
<td>Approx. 54 – 66</td>
</tr>
</tbody>
</table>

Revision: August 2012

2012 Maxima
Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the ABS actuator and electric unit (control unit) for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?
YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of ABS actuator and electric unit (control unit).
2. Check the resistance between the ABS actuator and electric unit (control unit) harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E26</td>
<td>26</td>
<td>15</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?
YES >> GO TO 3.
NO >> Repair the ABS actuator and electric unit (control unit) branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the ABS actuator and electric unit (control unit). Refer to BRC-85, "Wiring Diagram".

Is the inspection result normal?
YES (Present error)>>Replace the ABS actuator and electric unit (control unit). Refer to BRC-106, "Exploded View".
YES (Past error)>>Error was detected in the ABS actuator and electric unit (control unit) branch line.
NO >> Repair the power supply and the ground circuit.
TCM BRANCH LINE CIRCUIT

Diagnosis Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. | **CHECK CONNECTOR**
| | 1. Turn the ignition switch OFF.
| | 2. Disconnect the battery cable from the negative terminal.
| | 3. Check the following terminals and connectors for damage, bend and loose connection (unit side and connector side):
| | - TCM
| | - Harness connector F1
| | - Harness connector E3
| | Is the inspection result normal?
| | **YES** >> GO TO 2.
| | **NO** >> Repair the terminal and connector.
| 2. | **CHECK HARNESS FOR OPEN CIRCUIT**
| | 1. Disconnect the connector of TCM.
| | 2. Check the resistance between the TCM harness connector terminals.
| | | TCM harness connector | Resistance (Ω) | | |
| | | Connector No. | Terminal No. | |
| | | F15 | 32 | 31 | Approx. 54 – 66 |
| | Is the measurement value within the specification?
| | **YES** >> GO TO 3.
| | **NO** >> Repair the TCM branch line.
| 3. | **CHECK POWER SUPPLY AND GROUND CIRCUIT**
| | Check the power supply and the ground circuit of the TCM. Refer to **TM-120, "Wiring Diagram"**.
| | Is the inspection result normal?
| | **YES** (Present error)>> Replace the TCM. Refer to **TM-162, "Exploded View"**.
| | **YES** (Past error)>> Error was detected in the TCM branch line.
| | **NO** >> Repair the power supply and the ground circuit.

Revision: August 2012

LAN-148

2012 Maxima
IPDM-E BRANCH LINE CIRCUIT

Diagnosis Procedure

1. CHECK CONNECTOR

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Check the terminals and connectors of the IPDM E/R for damage, bend and loose connection (unit side and connector side).

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS FOR OPEN CIRCUIT

1. Disconnect the connector of IPDM E/R.
2. Check the resistance between the IPDM E/R harness connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E17</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 3.
NO >> Repair the IPDM E/R branch line.

3. CHECK POWER SUPPLY AND GROUND CIRCUIT

Check the power supply and the ground circuit of the IPDM E/R. Refer to PCS-18, "Diagnosis Procedure".

Is the inspection result normal?

YES (Present error)>>Replace the IPDM E/R. Refer to PCS-35, "Removal and Installation".
YES (Past error)>>Error was detected in the IPDM E/R branch line.
NO >> Repair the power supply and the ground circuit.
Diagnosis Procedure

1. CONNECTOR INSPECTION

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect all the unit connectors on CAN communication system.
4. Check terminals and connectors for damage, bend and loose connection.

Is the inspection result normal?

YES >> GO TO 2.
NO >> Repair the terminal and connector.

2. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector terminals.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 3.
NO >> Check the harness and repair the root cause.

3. CHECK HARNESS CONTINUITY (SHORT CIRCUIT)

Check the continuity between the data link connector and the ground.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Terminal No.</th>
<th>Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M22</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

Is the inspection result normal?

YES >> GO TO 4.
NO >> Check the harness and repair the root cause.

4. CHECK ECM AND IPDM E/R TERMINATION CIRCUIT

1. Remove the ECM and the IPDM E/R.
2. Check the resistance between the ECM terminals.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Approx. 108 – 132</td>
</tr>
</tbody>
</table>

3. Check the resistance between the IPDM E/R terminals.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Approx. 108 – 132</td>
</tr>
</tbody>
</table>

Is the measurement value within the specification?

YES >> GO TO 5.
NO >> Replace the ECM and/or the IPDM E/R.

5. CHECK SYMPTOM

Connect all the connectors. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.
6. CHECK UNIT REPRODUCTION

Perform the reproduction test as per the following procedure for each unit.

1. Turn the ignition switch OFF.
2. Disconnect the battery cable from the negative terminal.
3. Disconnect one of the unit connectors of CAN communication system.

 NOTE:
 ECM and IPDM E/R have a termination circuit. Check other units first.
4. Connect the battery cable to the negative terminal. Check if the symptoms described in the “Symptom (Results from interview with customer)” are reproduced.

 NOTE:
 Although unit-related error symptoms occur, do not confuse them with other symptoms.

Inspection result

Reproduced>>Connect the connector. Check other units as per the above procedure.
Non-reproduced>>Replace the unit whose connector was disconnected.