CONTENTS

PRECAUTION .. 3

PRECAUTIONS ... 3
 Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER" ... 3
 Precautions Necessary for Steering Wheel Rotation after Battery Disconnect (Early Production, With Electronic Steering Column Lock) 3
 Precaution for Drain Coolant 4
 Precaution for Disconnecting Fuel Piping 4
 Precaution for Removal and Disassembly 4
 Precaution for Inspection, Repair and Replacement ... 4
 Precaution for Assembly and Installation 4
 Parts Requiring Angular Tightening 4
 Precaution for Liquid Gasket 4

PREPARATION .. 6

PREPARATION ... 6
 Special Service Tool ... 6
 Commercial Service Tool 8

FUNCTION DIAGNOSIS 10

NOISE, VIBRATION, AND HARSHNESS (NVH) TROUBLESHOOTING 10
 NVH Troubleshooting - Engine Noise ... 10
 Use the Chart Below to Help You Find the Cause of the Symptom ... 11

ON-VEHICLE MAINTENANCE 12

SPARK PLUG .. 12
 Exploded View .. 12
 Removal and Installation 12

DRIVE BELTS ... 14
 Checking Drive Belts ... 14
 Tension Adjustment .. 14
 Removal and Installation 14

Removal and Installation of Drive Belt Auto-tensioner ... 15

AIR CLEANER FILTER .. 16
 Removal and Installation .. 16

CAMSHAFT VALVE CLEARANCE 17
 Valve Clearance .. 17

COMPRESSION PRESSURE 21
 On-Vehicle Service ... 21

ON-VEHICLE REPAIR ... 22

ENGINE ROOM COVER .. 22
 Removal and Installation .. 22

AIR CLEANER AND AIR DUCT 23
 Removal and Installation .. 23

INTAKE MANIFOLD COLLECTOR 24
 Removal and Installation .. 24

INTAKE MANIFOLD ... 27
 Removal and Installation .. 27

EXHAUST MANIFOLD AND THREE WAY CATALYST 30
 Removal and Installation .. 30

OIL PAN AND OIL STRAINER 34
 Exploded View .. 34
 Removal and Installation (Lower Oil Pan) 34
 Removal and Installation (Upper Oil Pan) 35

IGNITION COIL ... 39
 Exploded View .. 39
 Removal and Installation LH 39
 Removal and Installation RH 39

FUEL INJECTOR AND FUEL TUBE 40
 Exploded View .. 40
 Removal and Installation 40

Revision: November 2009

2010 Maxima
PRECAUTIONS

PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the SR and SB section of this Service Manual.

WARNING:
• To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
• Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SR section.
• Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

PRECAUTIONS WHEN USING POWER TOOLS (AIR OR ELECTRIC) AND HAMMERS

WARNING:
• When working near the Airbag Diagnosis Sensor Unit or other Airbag System sensors with the Ignition ON or engine running, DO NOT use air or electric power tools or strike near the sensor(s) with a hammer. Heavy vibration could activate the sensor(s) and deploy the air bag(s), possibly causing serious injury.
• When using air or electric power tools or hammers, always switch the Ignition OFF, disconnect the battery, and wait at least 3 minutes before performing any service.

Precautions Necessary for Steering Wheel Rotation after Battery Disconnect (Early Production, With Electronic Steering Column Lock)

NOTE:
• Before removing and installing any control units, first turn the push-button ignition switch to the LOCK position, then disconnect both battery cables.
• After finishing work, confirm that all control unit connectors are connected properly, then re-connect both battery cables.
• Always use CONSULT-III to perform self-diagnosis as a part of each function inspection after finishing work. If a DTC is detected, perform trouble diagnosis according to self-diagnosis results.

This vehicle is equipped with a push-button ignition switch and a steering lock unit. If the battery is disconnected or discharged, the steering wheel will lock and cannot be turned. If turning the steering wheel is required with the battery disconnected or discharged, follow the procedure below before starting the repair operation.

OPERATION PROCEDURE
1. Connect both battery cables.
 NOTE: Supply power using jumper cables if battery is discharged.
2. Carry the Intelligent Key or insert it to the key slot and turn the push-button ignition switch to ACC position. (At this time, the steering lock will be released.)
3. Disconnect both battery cables. The steering lock will remain released with both battery cables disconnected and the steering wheel can be turned.
4. Perform the necessary repair operation.
5. When the repair work is completed, re-connect both battery cables. With the brake pedal released, turn the push-button ignition switch from ACC position to ON position, then to LOCK position. (The steering wheel will lock when the push-button ignition switch is turned to LOCK position.)

6. Perform self-diagnosis check of all control units using CONSULT-III.

Precaution for Drain Coolant

- Drain coolant when engine is cooled.

Precaution for Disconnecting Fuel Piping

- Before starting work, make sure no fire or spark producing items are in the work area.
- Release fuel pressure before disassembly.
- After disconnecting pipes, plug openings to stop fuel leakage.

Precaution for Removal and Disassembly

- When instructed to use special service tools, use the specified tools. Always be careful to work safely, avoid forceful or uninstructed operations.
- Exercise maximum care to avoid damage to mating or sliding surfaces.
- Cover openings of engine system with tape or the equivalent, if necessary, to seal out foreign materials.
- Mark and arrange disassembly parts in an organized way for easy troubleshooting and assembly.
- When loosening nuts and bolts, as a basic rule, start with the one furthest outside, then the one diagonally opposite, and so on. If the order of loosening is specified, do exactly as specified. Power tools may be used where noted in the step.

Precaution for Inspection, Repair and Replacement

- Before repairing or replacing, thoroughly inspect parts. Inspect new replacement parts in the same way, and replace if necessary.

Precaution for Assembly and Installation

- Use torque wrench to tighten bolts or nuts to specification.
- When tightening nuts and bolts, as a basic rule, equally tighten in several different steps starting with the ones in center, then ones on inside and outside diagonally in this order. If the order of tightening is specified, do exactly as specified.
- Replace with new gasket, packing, oil seal or O-ring.
- Thoroughly wash, clean, and air-blow each part. Carefully check oil or coolant passages for any restriction and blockage.
- Avoid damaging sliding or mating surfaces. Completely remove foreign materials such as cloth lint or dust. Before assembly, oil sliding surfaces well.
- Release air within route after draining coolant.
- Before starting engine, apply fuel pressure to fuel lines with turning ignition switch ON (with engine stopped). Then make sure that there are no leaks at fuel line connections.
- After repairing, start engine and increase engine speed to check coolant, fuel, oil, and exhaust systems for leakage.

Parts Requiring Angular Tightening

- Use an angle wrench for the final tightening of the following engine parts:
 - Cylinder head bolts
 - Main bearing cap bolts
 - Connecting rod cap nuts
 - Crankshaft pulley bolt (No angle wrench is required as the bolt flange is provided with notches for angular tightening)
- Do not use a torque value for final tightening.
- The torque value for these parts are for a preliminary step.
- Ensure thread and seat surfaces are clean and coated with engine oil.

Precaution for Liquid Gasket

REMOVAL OF LIQUID GASKET SEALING
PRECAUTIONS

• After removing the bolts and nuts, separate the mating surface and remove the sealant using Tool.

 Tool number : KV10111100 (J-37228)

 CAUTION:
 Be careful not to damage the mating surfaces.
 • In areas where the cutter is difficult to use, use a plastic hammer to lightly tap (1) the cutter where the RTV Silicone Sealant is applied. Use a plastic hammer to slide the cutter (2) by tapping on the side.

 CAUTION:
 If for some unavoidable reason a tool such as a flat-bladed screwdriver is used, be careful not to damage the mating surfaces.

LIQUID GASKET APPLICATION PROCEDURE

1. Using a scraper, remove the old Silicone RTV Sealant adhering to the gasket application surface and the mating surface.
 • Remove the sealant completely from the groove of the gasket application surface, bolts, and bolt holes.

2. Thoroughly clean the gasket application surface and the mating surface and remove adhering moisture, grease and foreign materials.

3. Attach the sealant tube to the tube presser. Use Genuine Silicone RTV Sealant or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".

4. Apply the sealant using Tool without breaks to the specified location.

 Tube presser WS39930000 (–)

 • If there is a groove for the sealant application, apply the sealant to the groove.

 • As for the bolt holes, normally apply the sealant inside the holes. If specified, it should be applied outside the holes. Make sure to read the text of this manual.
 • Within five minutes of the sealant application, install the mating component.
 • If the sealant protrudes, wipe it off immediately.
 • Do not retighten after the installation.
 • After 30 minutes or more have passed from the installation, fill the engine with the specified oil and coolant. Refer to MA-18, "FOR NORTH AMERICA : Fluids and Lubricants" (United States and Canada) or MA-19, "FOR MEXICO : Fluids and Lubricants" (Mexico).

CAUTION:
Follow all specific instructions in this manual.
The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

<table>
<thead>
<tr>
<th>Tool number (Kent-Moore No.)</th>
<th>Tool name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST0501S000</td>
<td>Engine stand assembly</td>
<td>Disassembling and assembling</td>
</tr>
<tr>
<td>ST05011000</td>
<td>Engine stand</td>
<td></td>
</tr>
<tr>
<td>ST05012000</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>KV101J0010 (J-47242)</td>
<td>Engine support table</td>
<td>Removal engine and transmission assembly</td>
</tr>
<tr>
<td>KV10116200 (J-26336-A)</td>
<td>Valve spring compressor</td>
<td>Disassembling valve mechanism</td>
</tr>
<tr>
<td>KV10107902 (J-38959)</td>
<td>Valve oil seal puller</td>
<td>Removing valve oil seal</td>
</tr>
<tr>
<td>KV10107902 (J-39386)</td>
<td>Valve oil seal drift</td>
<td>Installing valve oil seal</td>
</tr>
<tr>
<td>ST16610001 (J-23907)</td>
<td>Pilot bushing puller</td>
<td>Removing crankshaft pilot bushing</td>
</tr>
</tbody>
</table>
PREPARATION

<table>
<thead>
<tr>
<th>Tool number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KV10111100</td>
<td>Removing steel oil pan and rear timing chain case</td>
</tr>
<tr>
<td>(J-37228)</td>
<td>Seal cutter</td>
</tr>
<tr>
<td>WS39930000</td>
<td>Pressing the tube of liquid gasket</td>
</tr>
<tr>
<td>()</td>
<td>Tube presser</td>
</tr>
<tr>
<td>KV10112100</td>
<td>Tightening bolts for bearing cap, cylinder head, etc.</td>
</tr>
<tr>
<td>(BT-8653-A)</td>
<td>Angle wrench</td>
</tr>
<tr>
<td>KV10114400</td>
<td>Loosening or tightening air fuel ratio A/F sensor</td>
</tr>
<tr>
<td>(J-44626)</td>
<td>a: 22 mm (0.87 in)</td>
</tr>
<tr>
<td>KV10117700</td>
<td>Loosening or tightening rear heated oxygen sensor</td>
</tr>
<tr>
<td>(J-44716)</td>
<td>a: 22 mm (0.87 in)</td>
</tr>
<tr>
<td>KV10117700</td>
<td>Removing and installing crankshaft pulley</td>
</tr>
<tr>
<td>(J-47128)</td>
<td>Seal installer</td>
</tr>
<tr>
<td>KV10114400</td>
<td>Installing rear main seal</td>
</tr>
</tbody>
</table>

Revision: November 2009
2010 Maxima
Commercial Service Tool

<table>
<thead>
<tr>
<th>(Kent-Moore No.) Tool name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power tool</td>
<td> Loosening bolts and nuts</td>
</tr>
<tr>
<td>Spark plug wrench</td>
<td> Removing and installing spark plug</td>
</tr>
<tr>
<td>Valve seat cutter set</td>
<td> Finishing valve seat dimensions</td>
</tr>
<tr>
<td>Piston ring expander</td>
<td> Removing and installing piston ring</td>
</tr>
</tbody>
</table>
| Valve guide drift | ![Valve guide drift](NT015) Removing and installing valve guide
Intake & Exhaust:
a: 9.5 mm (0.374 in) dia.
b: 5.5 mm (0.217 in) dia. |
| Valve guide reamer | ![Valve guide reamer](NT016) Reaming valve guide 1 or hole for oversize valve guide 2
Intake & Exhaust:
d1: 6.0 mm (0.236 in) dia.
d2: 10.2 mm (0.402 in) dia. |

Revision: November 2009

EM-8

2010 Maxima
<table>
<thead>
<tr>
<th>Tool name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J-43897-18) (J-43897-12) Oxygen sensor thread cleaner</td>
<td>Reconditioning the exhaust system threads before installing a new oxygen sensor (Use with anti-seize lubricant shown below.) a: J-43897-18 (18 mm dia.) for zirconia oxygen sensor b: J-43897-12 (12 mm dia.) for titania oxygen sensor</td>
</tr>
<tr>
<td>Anti-seize lubricant (Permatex 133AR or equivalent meeting MIL specification MIL-A-907)</td>
<td>Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads</td>
</tr>
</tbody>
</table>
1. Camshaft bearing noise
2. Piston pin noise
3. Piston slap noise
4. Main bearing noise
5. Connecting rod bearing noise
6. Drive belt noise (Sticking/Slipping)
7. Drive belt noise (Slipping)
8. Water pump noise
9. Timing chain and chain tensioner noise
Use the Chart Below to Help You Find the Cause of the Symptom

1. Locate the area where noise occurs.
2. Confirm the type of noise.
3. Specify the operating condition of engine.
4. Check specified noise source. Repair or replace the identified part as necessary.

<table>
<thead>
<tr>
<th>Location of noise</th>
<th>Type of noise</th>
<th>Operating condition of engine</th>
<th>Source of noise</th>
<th>Check item</th>
<th>Reference page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of engine</td>
<td>Ticking or</td>
<td></td>
<td>Tappet noise</td>
<td>Valve clearance</td>
<td>EM-17</td>
</tr>
<tr>
<td>Rocker cover</td>
<td>clicking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head</td>
<td>Rattle</td>
<td></td>
<td>Camshaft</td>
<td>Camshaft journal clearance Camshaft runout</td>
<td>EM-71</td>
</tr>
<tr>
<td>Crankshaft pulley</td>
<td>Slap or knock</td>
<td></td>
<td>Piston pin</td>
<td>Piston and piston pin clearance Connecting rod bushing clearance</td>
<td>EM-21</td>
</tr>
<tr>
<td>Cylinder block</td>
<td>Slap or rap</td>
<td></td>
<td>Piston slap</td>
<td>Piston-to-bore clearance Piston ring side clearance Piston ring end gap Connecting rod bend and torsion</td>
<td>EM-99</td>
</tr>
<tr>
<td>(Side of engine)</td>
<td></td>
<td></td>
<td>noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pan</td>
<td>Knock</td>
<td></td>
<td>Connecting</td>
<td>Connecting rod bushing clearance (Small end) Connecting rod bearing clearance (Big end)</td>
<td>EM-99</td>
</tr>
<tr>
<td>Knock</td>
<td></td>
<td></td>
<td>rod bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knock</td>
<td></td>
<td></td>
<td>noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front of engine</td>
<td>Tapping or</td>
<td></td>
<td>Timing chain</td>
<td>Timing chain cracks and wear Timing chain tensioner operation</td>
<td>EM-59</td>
</tr>
<tr>
<td>Timing chain cover</td>
<td>ticking</td>
<td></td>
<td>and chain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tensioner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front of engine</td>
<td>Squeaking or</td>
<td></td>
<td>Drive belts</td>
<td>Drive belts deflection</td>
<td>EM-14</td>
</tr>
<tr>
<td></td>
<td>fizzing</td>
<td></td>
<td>(Sticking or slip-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ping)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creaking</td>
<td></td>
<td>Drive belts</td>
<td>Idler pulley bearing operation</td>
<td>EM-59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Slipping)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squall</td>
<td></td>
<td>Water pump</td>
<td>Water pump operation</td>
<td>CO-18</td>
</tr>
<tr>
<td></td>
<td>Creak</td>
<td></td>
<td>noise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: Closely related B: Related C: Sometimes related —: Not related
Removal and Installation

REMOVAL

1. Remove the ignition coil. Refer to EM-39, "Removal and Installation LH" and EM-39, "Removal and Installation RH".

2. Remove the spark plug with a suitable spark plug wrench.

INSPECTION AFTER REMOVAL
• Do not use a wire brush for cleaning the spark plugs. Replace as necessary.

• If plug is covered with carbon, a spark plug cleaner may be used.

 Cleaner air pressure : less than 588 kPa (6 kg/cm², 85 psi)
 Cleaning time : less than 20 seconds

• Checking and adjusting plug gap is not required between change intervals. If the gap is out of specification, replace the spark plug.

INSTALLATION
Installation is in the reverse order of removal.

<table>
<thead>
<tr>
<th>Make</th>
<th>DENSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard type</td>
<td>FXE22HR11</td>
</tr>
<tr>
<td>Gap (nominal)</td>
<td>1.1 mm (0.043 in)</td>
</tr>
</tbody>
</table>
Checking Drive Belts

WARNING:
Inspect and check the drive belts with the engine off.
- Check that the indicator of drive belt auto-tensioner is within the possible use range.

NOTE:
- Check the drive belt auto-tensioner indication when the engine is cold.
- When new drive belt is installed, the indicator should be within the new drive belt range.
- Visually check entire drive belt for wear, damage or cracks.
- If the indicator is out of the possible use range or belt is damaged, replace drive belt.

Tension Adjustment
- Belt tension is not manually adjustable, it is automatically adjusted by the drive belt auto-tensioner.

Removal and Installation

REMOVAL
1. Remove the front RH wheel and tire. Refer to WT-63, "Adjustment".
2. Remove the front RH side cover.
3. While securely holding the hexagonal part in pulley center of drive belt auto-tensioner, move in the direction of arrow (loosening direction of tensioner) using suitable tool.

WARNING:
- Avoid placing hand in a location where pinching may occur if the holding tool accidentally comes off.

CAUTION:
- Do not loosen the auto-tensioner pulley bolt. (Do not turn it counterclockwise. If turned counterclockwise, the complete auto-tensioner must be replaced as a unit, including pulley.)
DRIVE BELTS

< ON-VEHICLE MAINTENANCE >

4. Insert a rod approximately 6 mm (0.24 in) in diameter through the rear of tensioner into retaining boss to lock tensioner pulley.
 • Leave tensioner pulley arm locked until belt is installed again.
5. Remove drive belt from water pump pulley and then remove it from the other pulleys.

INSTALLATION

1. Install the drive belt onto all of the pulleys.

 CAUTION:
 Confirm belts are completely set on the pulleys.

2. Release tensioner, and apply tension to drive belt.

 WARNING:
 • Avoid placing hand in a location where pinching may occur if the holding tool accidentally comes off.

 CAUTION:
 • Do not loosen the auto-tensioner pulley bolt. (Don't turn it counterclockwise. If turned counterclockwise, the complete auto-tensioner must be replaced as a unit, including pulley.)

3. Turn crankshaft pulley clockwise several times to equalize tension between each pulley.
4. Confirm tension of drive belt at indicator is within the possible use range. Refer to EM-14, "Checking Drive Belts".

Removal and Installation of Drive Belt Auto-tensioner

REMOVAL

 CAUTION:
 The complete auto-tensioner must be replaced as a unit, including the pulley.
1. Remove the drive belt. Refer to EM-14, "Removal and Installation".
 • Insert a rod approximately 6 mm (0.24 in) in diameter through the rear of tensioner into the retaining boss to lock tensioner pulley.
2. Remove the drive belt auto-tensioner, with power tool.

 CAUTION:
 Do not loosen the auto-tensioner pulley bolt. (Don't turn it counterclockwise. If turned counterclockwise, the complete auto-tensioner must be replaced as a unit, including pulley).

INSTALLATION

Installation is in the reverse order of removal.

 CAUTION:
 • If there is damage greater than peeled paint, replace drive belt auto-tensioner unit.
 • Do not swap the pulley between the new and old auto-tensioner units.
CHANGING THE AIR CLEANER FILTER

CAUTION:
It is not necessary to remove the front air duct to replace the air cleaner filter.
1. Unhook the air cleaner case side clips.
2. Remove the air cleaner filter.
3. Install a new air cleaner filter.
4. Lock the air cleaner case side clips.
CHECKING

• Perform inspection as follows after removal, installation or replacement of camshaft or valve related parts, or if there are unusual engine conditions regarding valve clearance.

Check valve clearance while engine is cold and not running.
1. Remove the air duct with air cleaner case, collectors, hoses, wires, harnesses, and connectors.
2. Remove the intake manifold collectors.
3. Remove the ignition coils and spark plugs.
4. Remove the rocker covers.
5. Set No.1 cylinder at TDC on its compression stroke.
 • Align pointer with TDC mark on crankshaft pulley.

• Check that the valve lifters on No.1 cylinder are loose and valve lifters on No.4 are tight. If not, turn the crankshaft one full revolution (360°) and align as shown.
6. Check only the valves as shown.

<table>
<thead>
<tr>
<th>Crank Position</th>
<th>Valve No. 1</th>
<th>Valve No. 2</th>
<th>Valve No. 3</th>
<th>Valve No. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1 TDC</td>
<td>Intake</td>
<td>Exhaust</td>
<td>Exhaust</td>
<td>Intake</td>
</tr>
</tbody>
</table>

- Using a feeler gauge, measure the clearance between the valve lifter and camshaft.
- Record any valve clearance measurements which are out of specification. They will be used later to determine the required replacement lifter size.

Valve Clearance for Checking (cold)

- **Intake**: 0.26 - 0.34 mm (0.010 - 0.013 in)
- **Exhaust**: 0.29 - 0.37 mm (0.011 - 0.015 in)

7. Turn crankshaft 240°.
8. Set No.3 cylinder at TDC on its compression stroke.
9. Check only those valves as shown.

<table>
<thead>
<tr>
<th>Crank Position</th>
<th>Valve No. 2</th>
<th>Valve No. 3</th>
<th>Valve No. 4</th>
<th>Valve No. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 3 TDC</td>
<td>Intake</td>
<td>Intake</td>
<td>Exhaust</td>
<td>Exhaust</td>
</tr>
</tbody>
</table>

10. Turn the crankshaft 240° and align as above.
11. Set No. 5 cylinder at TDC on its compression stroke.
12. Check only those valves as shown.

<table>
<thead>
<tr>
<th>Crank Position</th>
<th>Valve No. 1</th>
<th>Valve No. 4</th>
<th>Valve No. 5</th>
<th>Valve No. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 5 TDC</td>
<td>Exhaust</td>
<td>Intake</td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
</tbody>
</table>

13. If all valve clearances are within specification, install the following components. If the valve clearances are out of specification, adjust the valve clearances.
 • Intake manifold collectors
 • Rocker covers
 • All spark plugs
 • All ignition coils

VALVE ADJUSTING
CAMSHAFT VALVE CLEARANCE

< ON-VEHICLE MAINTENANCE >

CAUTION:
Adjust valve clearance while engine is cold.

NOTE:
• Perform adjustment by selecting the correct head thickness of the valve lifter (adjusting shims are not used).
• The specified valve lifter thickness is the dimension at normal temperatures. Ignore dimensional differences caused by temperature. Use specifications for hot engine condition to confirm valve clearances.

1. Remove the camshaft.
2. Remove the valve lifter that was measured as being outside the standard specifications.
3. Measure the center thickness of the removed lifter with a micrometer, as shown.

4. Use the equation below to calculate the replacement valve lifter thickness.
 Valve lifter thickness calculation equation: \[t = t_1 + (C_1 - C_2) \]
 \(t \) = thickness of the replacement lifter
 \(t_1 \) = thickness of the removed lifter
 \(C_1 \) = measured valve clearance
 \(C_2 \) = standard valve clearance
 • The thickness of the new valve lifter can be identified by the stamp mark on the reverse side (inside the lifter).
 • Available thickness of the valve lifter (factory setting):
 7.88 - 8.40 mm (0.3102 - 0.3307 in), in 0.02 mm (0.0008 in) increments, in 27 sizes (intake/exhaust). Refer to EM-122, "Camshaft".

5. Install the selected replacement valve lifter.
6. Install the camshaft.
7. Rotate the crankshaft a few turns by hand.
8. Confirm that the valve clearances are within specification.
9. After the engine has been run to full operating temperature, confirm that the valve clearances are within specification.

<table>
<thead>
<tr>
<th>Standard Valve Clearance</th>
<th>Cold</th>
<th>Hot* (reference data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>0.26 - 0.34 mm (0.010 - 0.013 in)</td>
<td>0.304 - 0.416 mm (0.012 - 0.016 in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.29 - 0.37 mm (0.011 - 0.015 in)</td>
<td>0.308 - 0.432 mm (0.012 - 0.017 in)</td>
</tr>
</tbody>
</table>

* Approximately 80°C (176°F)
 Punching in one or more cylinders is low:

a. Pour a small amount of engine oil into cylinders through the spark plug holes.

b. Retest compression (steps 5 - 8).

- If adding oil helps raise compression pressure, then the piston rings may be worn or damaged. If so, replace piston rings after checking piston.

- If the pressure stays low, a valve may be sticking or is seating improperly. Inspect and repair the valve and/or valve seat. Refer to EM-90, "Inspection After Disassembly". If the valve and/or valve seat is damaged excessively, replace as necessary.

- If compression stays low in two or more cylinders that are next to each other:
 - The cylinder head gasket may be leaking.
 - Both cylinders may have valve component damage. Inspect and repair as necessary.
ENGINE ROOM COVER

ON-VEHICLE REPAIR

ENGINE ROOM COVER

Removal and Installation

CAUTION:
Do not damage or scratch engine room cover when installing or removing.

REMOVAL
• Remove the engine room cover bolts and engine room cover.

INSTALLATION
Installation is in the reverse order of removal.
Removal

1. Remove engine room cover. Refer to EM-22, "Removal and Installation".
2. Remove front air duct.
3. Disconnect the tube clamp at the electric throttle control actuator and at the air duct hose.
4. Disconnect the blow-by hose.
5. Remove air duct hose and resonator assembly.
6. Disconnect mass air flow sensor.
7. Remove mass air flow sensor from air cleaner assembly, as necessary.
 CAUTION:
 - Handle mass air flow sensor with care.
 - Do not shock it.
 - Do not disassemble it.
 - Do not touch its sensor.
8. Remove air cleaner assembly.

Installation

Installation is in the reverse order of removal.
CAUTION:
Do not remove power valves.

REMOVAL

WARNING:
To avoid the danger of being scalded, never drain the coolant when the engine is hot.

CAUTION:
The gasket for intake manifold collector (upper) is secured together with intake manifold collector (lower) bolt. Thus, when replacing only the upper gasket the lower gasket must also be replaced.

1. Remove the cowl top. Refer to EXT-18, "Removal and Installation".
2. Remove the engine room cover. Refer to EM-22, "Removal and Installation".
3. Remove front air duct and air duct hose and resonator assembly. Refer to EM-23, "Removal and Installation".

Revision: November 2009
< ON-VEHICLE REPAIR >

4. Remove the electric throttle control actuator bolts in the reverse order as shown and remove the electric throttle control actuator and position aside.
 CAUTION:
 - Handle carefully to avoid any shock to the electric throttle control actuator.
 - Do not disassemble.

5. Disconnect the following:
 - Power brake booster vacuum hose
 - Fuel injector electrical connectors
 - PCV hose
 - Electric throttle control actuator electrical connector
 - EVAP canister purge hose
 CAUTION:
 - Cover any engine openings to avoid the entry of any foreign material.

6. Remove the EVAP canister purge volume solenoid valve bracket bolt. Position the valve aside.

7. Loosen the intake manifold collector bolts in the order as shown using power tool, and remove the intake manifold collector and gasket.

8. If necessary remove the following components:
 - VIAS control solenoid valve
 - EVAP canister purge volume control solenoid valve

INSTALLATION
Installation is in the reverse order of removal.
- Tighten intake manifold collector bolts in the order as shown.
INTAKE MANIFOLD COLLECTOR

< ON-VEHICLE REPAIR >

• Tighten electric throttle control actuator bolts in the order shown.

NOTE:
After installation, it is necessary to re-calibrate the electric throttle control actuator as follows:
1. Perform the “Throttle Valve Closed Position Learning” when harness connector of the electric throttle control actuator is disconnected. Refer to EC-19, "THROTTLE VALVE CLOSED POSITION LEARNING : Special Repair Requirement".
2. Perform the "Idle Air Volume Learning" when the electric throttle control actuator is replaced. Refer to EC-20, "IDLE AIR VOLUME LEARNING : Special Repair Requirement".
Removal and Installation

REMOVAL

WARNING:
To avoid the danger of being scalded, never drain the coolant when the engine is hot.

1. Release the fuel pressure. Refer to EC-576, "Inspection".
2. Disconnect the battery negative terminal. Refer to PG-65, "Removal and Installation (Battery)".
3. Remove intake manifold collector. Refer to EM-24, "Removal and Installation".
4. Disconnect fuel tube quick connector at vehicle piping side.
5. To remove the quick connector cap, hold the sides of the connector, push in the tabs and pull out the tube.

CAUTION:
- The tube can be removed when the tabs are completely depressed. Do not twist it more than necessary.
- Do not use any tools to remove the quick connector.
- Keep the resin tube away from heat. Be especially careful when welding near the tube.
- Prevent acid liquids such as battery electrolyte, etc. from getting on the resin tube.
- Do not bend or twist the tube during removal or installation.
- Do not remove the remaining retainer on the tube.
- When the tube is replaced, also replace the retainer with a new one.
INTAKE MANIFOLD

< ON-VEHICLE REPAIR >

• To keep the connecting portion clean and to avoid damage and foreign materials entering, cover the ends of the fuel tubes with plastic bags or something similar.

NOTE:
If the connector and the tube are stuck together, push and pull several times until they start to move. Then disconnect them by pulling.

6. Remove the fuel rail with the fuel injectors attached, from the intake manifold. Remove the fuel injector O-rings and use new O-rings for installation.

7. Loosen the bolts in the order as shown, and remove the intake manifold with power tool.

INSPECTION AFTER REMOVAL
Surface Distortion
• Using straightedge and feeler gauge, inspect the surface distortion of the intake manifold. Inspect the surface distortion of the intake manifold collector. Refer to EM-24, "Removal and Installation".

 Standard : 0.1 mm (0.004 in)

INSTALLATION
Installation is in the reverse order of removal. Follow the procedure below for specific tightening sequences and procedures.
• Install intake manifold bolts in two steps in the numerical order as shown.

 Step 1 : 7.3 N·m (0.74 kg-m, 65 in-lb)
 Step 2 : 25 N·m (2.6 kg-m, 19 ft-lb)

NOTE:
After installation, it is necessary to re-calibrate the electric throttle control actuator as follows:
1. Perform the "Throttle Valve Closed Position Learning" when harness connector of the electric throttle control actuator is disconnected. Refer to EC-19, "THROTTLE VALVE CLOSED POSITION LEARNING : Special Repair Requirement".
2. Perform the "Idle Air Volume Learning" when the electric throttle control actuator is replaced. Refer to EC-20, "IDLE AIR VOLUME LEARNING : Special Repair Requirement".
• Install the quick connector as follows:
 - Make sure no foreign substances are deposited in and around the fuel tube and quick connector and that there is no damage.
 - Align the center to insert the quick connector straight onto the fuel tube.
 - Insert the fuel tube until a click is heard.
 - Install the quick connector cap on the quick connector joint. Align the arrow mark on the quick connector cap to the upper side.
 - Install the fuel hose into the hose clamp.

INSPECTION AFTER INSTALLATION
Make sure there is no fuel leakage at connections as follows:

1. Apply fuel pressure to fuel lines by turning ignition switch ON (with engine stopped). Then check for fuel leaks at connections.
2. Start the engine and rev it up and check for fuel leaks at connections.

CAUTION:
Do not touch engine immediately after stopping as engine is extremely hot.

NOTE:
Use mirrors for checking on connections out of the direct line of sight.
REMOVAL

WARNING:

1. Exhaust manifold heat shield (RH)
2. Air fuel ratio (A/F) sensor 1 (bank 1)
3. Exhaust manifold (RH)
4. Gaskets
5. Heated oxygen sensor 2 (bank 1)
6. Three way catalyst (manifold) (bank 1)
7. Three way catalyst (manifold) (bank 2)
8. Heated oxygen sensor 2 (bank 2)
9. Exhaust manifold (LH)
10. Air fuel ratio (A/F) sensor 1 (bank 2)
11. Exhaust manifold heat shield (LH)

EM-30

Revision: November 2009

2010 Maxima
Perform the work when the exhaust and cooling system have completely cooled down.
When removing the front and rear engine mounting through bolts and nuts, lift the engine up slightly for safety. For engine slingers, refer to EM-95, "Removal and Installation".

1. Remove engine and CVT assembly. Refer to EM-95, "Removal and Installation".
2. Remove the RH and LH three way catalyst support brackets.
3. Remove heated oxygen sensor 2 (bank 1), heated oxygen sensor 2 (bank 2), air fuel ratio (A/F) sensor 1 (bank 1) and air fuel ratio (A/F) sensor 1 (bank 2).
 a. Remove harness connector of each sensor, and disconnect the harness from the bracket and middle clamp.
 b. Remove both heated oxygen sensors and air fuel ratio (A/F) sensors using Tool.

 Tool numbers: KV10114400 (J-38365)
 **: ** — (J-44626)

 CAUTION:
 • Be careful not to damage heated oxygen sensors or air fuel ratio (A/F) sensors.
 • Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; replace with a new sensor.

4. Remove exhaust manifold and three way catalyst heat shields with power tool.
5. Remove the three way catalyst (manifold) (bank 1) and three way catalyst (manifold) (bank 2) by loosening the bolts first and then removing the nuts and through bolts.
6. Remove the exhaust manifolds RH (A) and LH (B). Loosen the exhaust manifold nuts in the order as shown.

 : Front

INSPECTION AFTER REMOVAL

Surface Distortion
• Use a reliable straightedge and feeler gauge to check the flatness of the exhaust manifold mating surfaces.

 Limit: 0.3 mm (0.012 in)
EXHAUST MANIFOLD AND THREE WAY CATALYST

< ON-VEHICLE REPAIR >

INSTALLATION

Installation is in the reverse order of removal.

- Install the exhaust manifold nuts in the order as shown RH (A) and LH (B).

 ← : Front

- Install RH (A) and LH (B) three way catalyst support brackets.
- Hand tighten the three way catalyst support bracket bolts to seat the support brackets.
- Tighten the bolts to specification in the numerical order as shown.

CAUTION:
Do not tighten if support brackets do not fit tightly against oil pan and three way catalysts.

Three way catalyst support bracket bolts : 22.0 N·m (2.2 kg-m, 16 ft-lb)

CAUTION:
- Before installing a heated oxygen sensor or air fuel ratio (A/F) sensor, clean the exhaust manifold threads using the oxygen sensor thread cleaner tool, and apply anti-seize lubricant.

 Tool numbers : — (J-43897-18)
 : — (J-43897-12)

- Do not over-tighten the air fuel ratio (A/F) sensor or heated oxygen sensors. Doing so may cause damage.
| Tool numbers | KV10114400 (J-38365) | — (J-44626) |
Removal and Installation (Lower Oil Pan)

REMOVAL

WARNING:
• You should not remove the oil pan until the exhaust system and cooling system have completely cooled off.

1. Drain the engine oil. Refer to LU-9, "Changing Engine Oil".
2. Loosen the lower oil pan bolts using power tool in order as shown.
3. Remove the lower oil pan.
OIL PAN AND OIL STRAINER

< ON-VEHICLE REPAIR >

a. Insert Tool between the lower oil pan and the upper oil pan.

 Tool number: KV1011100 (J-37228)

 CAUTION:
 • Be careful not to damage the mating surface.
 • Do not insert a screwdriver, this will damage the mating surfaces.

b. Slide the Tool by tapping its side with a hammer to remove the lower oil pan from the upper oil pan.

4. If re-installing the original lower oil pan, remove the old sealant from the mating surfaces using a scraper.
 • Also remove the old sealant from mating surface of the upper oil pan.
 • Remove the old sealant from the bolt holes and threads.

 CAUTION:
 Do not scratch or damage the mating surfaces when cleaning off the old sealant.

INSPECTION AFTER REMOVAL
Clean oil strainer if any object is attached.

INSTALLATION

1. Apply a continuous bead of sealant to the lower oil pan.
 • Use Genuine Silicone RTV Sealant, or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".
 • Be sure the sealant is 4.5 - 5.5 mm (0.177 - 0.217 in) wide.
 • Installation must be done within 5 minutes after applying sealant.

2. Install the lower oil pan. Tighten the lower oil pan bolts in order as shown.
 • Wait at least 30 minutes before refilling the engine with oil.

INSPECTION AFTER INSTALLATION
• Start the engine and check for leaks. Refer to LU-8, "Inspection".
• Inspect the engine oil level. Refer to LU-8, "Inspection".

Removal and Installation (Upper Oil Pan)

REMOVAL

WARNING:
• You should not remove the oil pan until the exhaust system and cooling system have completely cooled off.
• When removing the front and rear engine through bolts and nuts, lift the engine up slightly for safety.
 For engine slingers, refer to EM-95, "Removal and Installation".

CAUTION:
When removing the upper oil pan from the engine, first remove the crankshaft position sensor (POS). Be careful not to damage sensor edges or signal plate teeth.
OIL PAN AND OIL STRAINER

< ON-VEHICLE REPAIR >

1. Remove the engine from the vehicle. Refer to EM-95, "Removal and Installation".
2. Drain the engine oil. Refer to LU-9, "Changing Engine Oil".
3. Remove the oil dipstick.
4. Remove the drive belt. Refer to EM-14, "Removal and Installation".
5. Disconnect the A/C compressor harness connector.
6. Remove the A/C compressor bolts and remove the A/C compressor. Refer to HA-44, "Removal and Installation for Compressor".
7. Remove coolant pipe bolts.
8. Disconnect the coolant lines from the engine oil cooler.
9. Remove the oil filter and engine oil cooler from the upper oil pan.
10. Remove the oil pressure switch, and the crankshaft position sensor (POS) from the upper oil pan.
11. Remove the lower oil pan. Refer to EM-34, "Removal and Installation (Lower Oil Pan)".
12. Remove the upper oil pan.
 a. Loosen the bolts in the order as shown, using power tool.

 b. Insert an appropriate size tool into the notch (1) of the upper oil pan as shown.

 c. Pry off the upper oil pan by moving the tool up and down (2) as shown.

13. Remove the O-ring seals from the bottom of the cylinder block and oil pump housing. Use new O-rings for installation.
14. Remove front cover gasket and rear oil seal retainer gasket.

15. Remove the oil strainer.

16. If re-installing the original oil pan, remove the old sealant from the mating surfaces using a scraper.
 • Also remove the old sealant from mating surface of the cylinder block.
 • Remove the old sealant from the bolt holes and threads.
 CAUTION:
 Do not scratch or damage the mating surfaces when cleaning off the old sealant.

INSPECTION AFTER REMOVAL
Clean oil strainer if any object is attached.

INSTALLATION

CAUTION:
Wait at least 30 minutes before refilling the engine with oil.

1. Install oil strainer and tighten bolt to specified torque. Refer to EM-35, "Removal and Installation (Upper Oil Pan)."

2. Apply Genuine Silicone RTV Sealant or equivalent, to the front cover gasket and the rear oil seal retainer gasket as shown. Refer to GI-15, "Recommended Chemical Products and Sealants".

3. Install the front cover gasket and rear oil seal retainer gasket as shown.
4. Apply a bead of sealant to the cylinder block mating surface of the upper oil pan to a limited portion as shown.
 • Use Genuine Silicone RTV Sealant, or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".
 • Be sure the sealant is applied to a limited portion as shown, and the sealant is 4.0 - 5.0 mm (0.157 - 0.197 in) or 4.5 - 5.5 mm (0.177 - 0.217 in) wide.
 • Attaching should be done within 5 minutes after coating.

5. Install new O-rings on the cylinder block and oil pump body.

6. Install the upper oil pan.
 • Tighten upper oil pan bolts in the order as shown.
 • Wait at least 30 minutes before refilling the engine with oil.

7. Install the lower oil pan. Refer to EM-34, "Removal and Installation (Lower Oil Pan)".
8. Installation of the remaining components is in the reverse order of removal.

INSPECTION AFTER INSTALLATION
• Start the engine and check for leaks. Refer to LU-8, "Inspection".
• Inspect the engine oil level. Refer to LU-8, "Inspection".
REMOWAL
1. Remove engine room cover. Refer to EM-22, "Removal and Installation".
2. Disconnect ignition coil connector.
3. Remove the ignition coil.
 CAUTION:
 Never shock ignition coil.

INSTALLATION
Installation is in the reverse order of removal.

Removal and Installation RH

REMOWAL
1. Remove the intake manifold collector. Refer to EM-24, "Removal and Installation".
2. Disconnect ignition coil connector.
3. Remove the ignition coil.
 CAUTION:
 Never shock ignition coil.

INSTALLATION
Installation is in the reverse order of removal.
CAUTION:
Never remove or disassemble parts unless instructed.

Removal and Installation

REMOVAL

WARNING:
• Put a “CAUTION: FLAMMABLE” sign in the workshop.
• Be sure to work in a well ventilated area and furnish workshop with a CO2 fire extinguisher.
• Never smoke while servicing fuel system. Keep open flames and sparks away from the work area.
• To avoid the danger of being scalded, never drain engine coolant when engine is hot.

1. Remove engine room cover. Refer to EM-22, "Removal and Installation".
2. Release the fuel pressure. Refer to EC-576, "Inspection".
3. Disconnect the battery negative terminal. Refer to PG-65, "Removal and Installation (Battery)".
4. Remove front wiper arm and cowl top extension. Refer to WW-91, "Exploded View" and EXT-17, "Exploded View".
5. Remove the electric throttle control actuator bolts in the reverse order as shown and remove the electric throttle control actuator.
 CAUTION:
 • Handle carefully to avoid any shock to the electric throttle control actuator.
 • Do not disassemble.

6. Remove intake manifold collector. Refer to EM-24, "Removal and Installation".

7. When separating fuel feed hose and fuel tube connection, disconnect quick connector as follows:
 a. Remove quick connector cap from quick connector.
 b. Disconnect quick connector from fuel tube as follows:
 CAUTION:
 Disconnect quick connector by using the quick connector release (commercial service tool: J-45488), not by picking out retainer tabs.
 i. With the sleeve side of quick connector release facing to quick connector, install the quick connector release onto fuel tube.
 ii. Insert the quick connector release (A) into quick connector (2) until sleeve (B) contacts and goes no further. Hold quick connector release on that position.
 CAUTION:
 Inserting quick connector release hard will not disconnect quick connector. Hold quick connector release where it contacts and goes no further.
 iii. Draw and pull out quick connector straight from fuel tube (1).
 CAUTION:
 • Pull quick connector (E) holding position (D) as shown in the figure.
 • Never pull with lateral force applied. O-ring inside quick connector may be damaged.
 • Prepare container and cloth beforehand as fuel will leakage out.
 • Avoid fire and sparks.
 • Keep parts away from heat source. Especially, be careful when welding is performed around them.
 • Never expose parts to battery electrolyte or other acids.
 • Never bend or twist connection between quick connector and fuel feed hose (with damper) during installation/removal.
 • To keep clean the connecting portion and to avoid damage and foreign materials, cover them completely with plastic bags, etc. (A) or something similar.

8. Disconnect harness connector from fuel injector.
< ON-VEHICLE REPAIR >

9. Loosen bolts in reverse order as shown, and remove fuel tube and fuel injector assembly.

CAUTION:
Never tilt fuel tube, or remaining fuel in pipes may flow out from pipes.

10. Remove fuel injector from fuel tube as follows:
 a. Open and remove clip (1).
 - 3: O-ring (green)
 - 4: O-ring (black)
 - A: Installed condition
 - B: Clip groove
 b. Remove fuel injector (2) from fuel tube (5) by pulling straight.
 CAUTION:
 • Be careful with remaining fuel that may go out from fuel tube.
 • Be careful not to damage injector nozzle during removal.
 • Never bump or drop fuel injector.
 • Never disassemble fuel injector.

11. Remove fuel damper from fuel tube.

INSTALLATION

1. Install fuel damper as follows:
 a. Install new O-ring (2) to fuel tube (1) as shown. When handling new O-ring, be careful of the following caution:
 CAUTION:
 • Handle O-ring with bare hands. Never wear gloves.
 • Lubricate O-ring with new engine oil.
 • Never clean O-ring with solvent.
 • Check that O-ring and its mating part are free of foreign material.
 • When installing O-ring, be careful not to scratch it with tool or fingernails. Also be careful not to twist or stretch O-ring. If O-ring was stretched while it was being attached, never insert it quickly into fuel tube.
 • Insert new O-ring straight into fuel tube. Never twist it.
 b. Install spacer (3) to fuel damper (4).
 c. Insert fuel damper straight into fuel tube.
 CAUTION:
 • Insert straight, checking that the axis is lined up.
 • Never pressure-fit with excessive force.

 Reference value : 130 N (13.3 kg, 29.2 lb)
 • Insert fuel damper until (B) is touching (A) of fuel tube.
 d. Tighten bolts evenly in turn.
 • After tightening bolts, check that there is no gap between fuel damper cap (5) and fuel tube.

2. Install new O-rings to fuel injector paying attention to the following.
 CAUTION:
 • Upper and lower O-ring are different. Be careful not to confuse them.
FUEL INJECTOR AND FUEL TUBE

< ON-VEHICLE REPAIR >

Fuel tube side : Black
Nozzle side : Green

- Handle O-ring with bare hands. Never wear gloves.
- Lubricate O-ring with new engine oil.
- Never clean O-ring with solvent.
- Check that O-ring and its mating part are free of foreign material.
- When installing O-ring, be careful not to scratch it with tool or fingernails. Also be careful not to twist or stretch O-ring. If O-ring was stretched while it was being attached, never insert it quickly into fuel tube.
- Insert O-ring straight into fuel injector. Never decenter or twist it.

3. Install fuel injector to fuel tube as follows:
 a. Insert clip (3) into clip groove (F) on fuel injector (5).
 - Insert clip so that protrusion (E) of fuel injector matches cutout (C) of clip.
 CAUTION:
 - Never reuse clip. Replace it with new one.
 - Be careful to keep clip from interfering with O-ring. If interference occurs, replace O-ring.
 b. Insert fuel injector into fuel tube (1) with clip attached.
 - Insert it while matching it to the axial center.
 - Insert fuel injector so that protrusion (A) of fuel tube matches cutout (B) of clip.
 - Check that fuel tube flange (G) is securely fixed in flange fixing groove (D) on clip.
 c. Check that installation is complete by checking that fuel injector does not rotate or come off.
 - Check that protrusions of fuel injectors and fuel tubes are aligned with cutouts of clips after installation.

4. Install fuel tube and fuel injector assembly to intake manifold.
 CAUTION:
 Be careful not to let tip of injector nozzle come in contact with other parts.
 - Tighten bolts in two steps in numerical order as shown.

 - : Engine front

 1st step : 10.1 N·m (1.0 kg-m, 7 ft-lb)
 2nd step : 22.0 N·m (2.2 kg-m, 16 ft-lb)

6. Install intake manifold collector. Refer to EM-24, "Removal and Installation".
7. Connect quick connector between fuel feed hose and fuel tube connection with the following procedure:
 a. Check no foreign substances are deposited in and around fuel tube and quick connector, and no damage on them.
 b. Thinly apply new engine oil around fuel tube from tip end to spool end.
 c. Align center to insert quick connector straightly into fuel tube.
FUEL INJECTOR AND FUEL TUBE

ON-VEHICLE REPAIR

- Insert quick connector (1) to fuel tube until top spool (2) is completely inside quick connector, and 2nd level spool (3) exposes right below quick connector.

\[\text{B : Fitted condition} \]
\[\leftrightarrow : \text{Upright insertion} \]

CAUTION:
- Hold (A) position as shown in the figure when inserting fuel tube into quick connector.
- Carefully align center to avoid inclined insertion to prevent damage to O-ring inside quick connector.
- Insert until you hear a “click” sound and actually feel the engagement.
- To avoid misidentification of engagement with a similar sound, be sure to perform the next step.

d. Pull quick connector by hand holding position. Check it is completely engaged (connected) so that it does not come out from fuel tube.

e. Install quick connector cap (3) to quick connector.

\[\begin{array}{|l|}
\hline
1 & : \text{Fuel feed hose} \\
2 & : \text{Fuel tube} \\
B & : \text{Upper view} \\
\hline
\end{array} \]
- Install quick connector cap with arrow (A) on surface facing in direction of quick connector (fuel feed hose side).

CAUTION:
If quick connector cap cannot be installed smoothly, quick connector may have not been installed correctly. Check connection again.

d. Secure fuel feed hose to clamp of quick connector cap.

e. Installation is in the reverse order of removal.

Inspection

INSPECTION AFTER INSTALLATION

Check on Fuel Leakage
1. Turn ignition switch “ON” (with the engine stopped). With fuel pressure applied to fuel piping, check there are no fuel leakage at connection points.

NOTE:
Use mirrors for checking at points out of clear sight.

2. Start the engine. With engine speed increased, check again that there are no fuel leakage at connection points.

CAUTION:
Never touch the engine immediately after stopped, as the engine becomes extremely hot.
Removal and Installation LH

REMOVAL
1. Remove the engine room cover. Refer to EM-22, "Removal and Installation".
2. Remove front air duct. Refer to EM-23, "Removal and Installation".
3. Remove blow by hose from rocker cover.
4. Remove camshaft position sensors.
 CAUTION:
 • Handle carefully to avoid dropping and shocks.
 • Do not disassemble.
 • Do not allow metal powder to adhere to magnetic part at sensor tip (A).
 • Do not place sensors in a location where they are exposed to magnetism.
5. Disconnect the ignition coil connectors.
6. Remove the ignition coils. Refer to EM-39, "Removal and Installation LH".
 CAUTION:
Never shock ignition coils.

7. Remove LH rocker cover bolts from cylinder head as shown.

\[\text{Front} \]

INSTALLATION

Installation is in the reverse order of removal.

- Apply sealant to the areas on the front corners using Tool.
- Use Genuine Silicone RTV Sealant or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".

Tool number : WS39930000

- Tighten the rocker cover bolts in two steps in the order as shown.

\[\text{Front} \]

Rocker cover bolts

- **Step 1** : 1.96 N·m (0.20 kg-m, 17 in-lb)
- **Step 2** : 8.33 N·m (0.85 kg-m, 74 in-lb)

Removal and Installation RH

REMOVAL

1. Remove the engine room cover. Refer to EM-22, "Removal and Installation".
2. Remove the front air duct and air duct hose and resonator assembly. Refer to EM-23, "Removal and Installation".
3. Remove the intake manifold collector. Refer to EM-27, "Removal and Installation".
4. Remove ignition coils. Refer to EM-39, "Removal and Installation RH".
 CAUTION:
 Never shock ignition coils.

5. Remove camshaft position sensors.
 CAUTION:
 - Handle carefully to avoid dropping and shocks.
 - Do not disassemble.
 - Do not allow metal powder to adhere to magnetic part at sensor tip (A).
 - Do not place sensors in a location where they are exposed to magnetism.

6. Remove RH rocker cover bolts from cylinder head as shown.

 ![Diagram](ALBIA0258ZZ)

 : Front

INSTALLATION

Installation is in the reverse order of removal.

- Apply sealant to the areas on the front corners using Tool.
- Use Genuine Silicone RTV Sealant or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".

 Tool number : WS39930000 (—)

- **Tighten the rocker cover bolts in two steps in the order as shown.**
ROCKER COVER

< ON-VEHICLE REPAIR >

izards: Front

Rocker cover bolts
Step 1 : 1.96 N·m (0.20 kg-m, 17 in-lb)
Step 2 : 8.33 N·m (0.85 kg-m, 74 in-lb)
NOTE:
- This section describes the procedure for removal/installation of the front timing chain case without removing the oil pan (upper) from the vehicle.
- When rear timing chain case must be removed, remove the engine from the vehicle. Then remove front timing chain case, timing chain related parts, and rear timing chain case in this order, and install in reverse order of removal. Refer to EM-95, "Removal and Installation".
- Refer to EM-59, "Exploded View" for component parts location.

REMOVAL
1. Disconnect the battery negative terminal. Refer to PG-65, "Removal and Installation (Battery)".
2. Remove engine under cover. Refer to EXT-13, "Exploded View".
3. Drain the engine coolant from the radiator. Refer to CO-11, "Changing Engine Coolant".
4. Drain the engine oil. Refer to LU-9, "Changing Engine Oil".
5. Drain the power steering fluid. Refer to ST-13, "Draining".
6. Remove engine room cover. Refer to EM-22, "Removal and Installation".
7. Remove front air duct. Refer to EM-23, "Removal and Installation".
8. Remove battery tray. Refer to PG-66, "Removal and Installation (Battery Tray)".
9. Remove the hood ledge covers (RH and LH).
10. Remove cowl top and cowl top extension. Refer to EXT-18, "Removal and Installation".
11. Remove upper radiator hose.
12. Disconnect engine coolant reservoir hose from the radiator and remove engine coolant reservoir.
13. Remove cooling fan assembly. Refer to CO-16, "Removal and Installation".
14. Disconnect lower radiator hose from engine.
15. Recover the A/C system R134a. Refer to HA-34, "Collection and Charge".
16. Remove the starter motor. Refer to STR-17, "Removal and Installation".
17. Disconnect the power steering fluid reservoir tank hose from the power steering pump and fluid cooler and remove the power steering fluid reservoir tank. Refer to ST-30, "Exploded View".
18. Remove the front RH wheel and tire. Refer to WT-63, "Adjustment".
19. Remove the engine side under cover.
20. Remove the drive belt. Refer to EM-14, "Removal and Installation".
21. Remove the power steering pump. Refer to ST-29, "Removal and Installation".
22. Remove the lower oil pan. Loosen the lower oil pan bolts using power tool in order as shown.

a. Insert Tool between the lower oil pan and the upper oil pan.

 Tool number : KV10111100 (J-37228)

 • Be careful not to damage the mating surface.
 • Do not insert a screwdriver, this will damage the mating surfaces.

b. Slide (2) the Tool by tapping (1) its side with a hammer to remove the lower oil pan from the upper oil pan.

23. Remove upper oil pan bolts in reverse order as shown.

24. Remove the generator. Refer to CHG-22, "Removal and Installation".
25. Disconnect the A/C tubes from the A/C compressor and position aside.
26. Remove the A/C compressor bolts and remove the A/C compressor. Refer to HA-44, "Removal and Installation for Compressor".
27. Remove the generator bracket. Refer to CHG-22, "Exploded View".
28. Support the engine with suitable jack and remove the RH engine insulator, mount and bracket. Refer to EM-95, "Removal and Installation".
29. Remove the rocker covers, if necessary. Refer to EM-45, "Removal and Installation LH" and EM-46, "Removal and Installation RH".

NOTE:
Necessary only when removing timing chains.

30. If removing the timing chains, obtain compression TDC of No. 1 cylinder as follows:
 a. Rotate crankshaft pulley clockwise to align timing mark (grooved line without color) with timing indicator.

b. Check that intake and exhaust camshaft lobes on No. 1 cylinder (right bank of engine) are located as shown.
 • If not, turn the crankshaft one revolution (360°) and align as shown.

31. Lock the drive plate using Tool attached to the starter bolt hole.

 Tool number : KV10117700 (J-44716)

 CAUTION:
Do not damage the ring gear teeth, or the signal plate teeth behind the ring gear, when setting the Tool.

32. Remove the crankshaft pulley as follows:
 a. Loosen crankshaft pulley and locate bolt seating surface at 10 mm (0.39 in) from its original position.
 b. Position a pulley puller at recess hole of crankshaft pulley to remove crankshaft pulley.
 CAUTION:
Do not use a puller claw on crankshaft pulley periphery.

33. Remove engine oil cooler tube bolts and bracket.
34. Disconnect the oil pressure switch harness connector.
35. Disconnect valve timing control harness connector.
36. Remove the Bank 1 (RH) (A) and Bank 2 (LH) (B) IVT covers.
 a. Loosen the IVT cover bolts in the reverse order as shown.
 CAUTION:
 The shaft in the IVT cover is inserted into the center hole of the intake camshaft sprocket. Remove the IVT cover by pulling straight out until the IVT cover disengages from the camshaft sprocket.
 • A: Bank 1 (Conventional RH bank)
 • B: Bank 2 (Conventional LH bank)
 • C: Dowel pin hole

 b. Shaft is engaged with intake side camshaft sprocket center hole on inside. Pull straight out so as not to tilt until the joint is disengaged.
 • The mating surface of magnet retarder (2) may be fitted with the exhaust side camshaft sprocket via engine oil. Open IVT cover (1) carefully.
 • If the mating surface of the magnet retarder is fitted with the camshaft sprocket, open the IVT cover within the range that the load is not applied to the harness. Remove it so as to prevent magnet retarder from dropping.
 CAUTION:
 • Be careful not to damage magnet retarder.
 • When carrying IVT cover, face the magnet retarder side up to prevent the IVT cover from falling from magnet retarder.
 • Never remove magnet retarder from IVT cover. (Disassembly prohibited)

37. Remove the A/C idler pulley and bracket and the drive belt auto-tensioner.
38. If necessary, remove the idler pulley and water pump cover.
39. Remove the front timing chain case.
 a. Loosen the front timing chain case bolts in the order as shown.
b. Insert the appropriate size tool into the notch (A) at the top of the front timing chain case as shown.

c. Pry off the case by moving the suitable tool (B) as shown.
 • Cut liquid gasket for removal using Tool.
 CAUTION:
 • Do not use a screwdriver or similar tool.
 • After removal, handle carefully so it does not bend, or warp under a load.

40. Remove O-rings (1) from rear timing chain case.
 • A: Bank 1
 • B: Bank 2
 CAUTION:
 Use new O-rings for installation.

41. Remove the front oil seal from the front timing chain case using a suitable tool.
 CAUTION:
 Do not damage the front cover.

42. Remove all old Silicone RTV Sealant from all the bolt holes and bolts.
 CAUTION:
 Do not damage the threads or mating surfaces.

43. Use a scraper to remove all of the old Silicone RTV Sealant from the front timing chain case and opposite mating surfaces.
 CAUTION:
 Do not damage the mating surfaces.
INSTALLATION

1. Install dowel pins (right and left) into front timing chain case up to a point close to taper in order to shorten protrusion length.

2. Install the new front oil seal on the front timing chain case. Apply new engine oil to the oil seal edges.

 NOTE:
 Install it so that each seal lip is oriented as shown.

 a. Install the new front oil seal so that it becomes flush with the face with front timing chain case using suitable drift.

 CAUTION:
 Press fit straight and avoid causing burrs or tilting the oil seal.

 NOTE:
 Make sure the garter spring is in position and seal lip is not inverted.

3. Install new O-rings (1) on rear timing chain case.
 • A: Bank 1
 • B: Bank 2

 CAUTION:
 Use new O-rings for installation.
4. Apply Silicone RTV Sealant to front timing chain case as shown.
 • Use Genuine Silicone RTV Sealant, or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".
 • Before installation, wipe off the protruding sealant.
 • C: 2.6 - 3.6 mm (0.102 - 0.142 in) dia.

5. Install dowel pin on the rear timing chain case into dowel pin hole in front timing chain case.

6. Loosely install the front timing chain case bolts.

<table>
<thead>
<tr>
<th>Bolt position</th>
<th>Bolt diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>8 mm (0.31 in)</td>
</tr>
<tr>
<td>3 – 22</td>
<td>6 mm (0.24 in)</td>
</tr>
</tbody>
</table>

7. Tighten the front timing chain case bolts in the order as shown.
 • Retighten the front timing chain case bolts in the order as shown.

<table>
<thead>
<tr>
<th>Bolt position</th>
<th>Tightening specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>28.5 N·m (2.9 kg-m, 21 ft-lb)</td>
</tr>
<tr>
<td>3 – 22</td>
<td>12.8 N·m (1.3 kg-m, 9 ft-lb)</td>
</tr>
</tbody>
</table>

8. Install upper oil pan bolts as shown. Refer to EM-35, "Removal and Installation (Upper Oil Pan)".

9. Install lower oil pan. Refer to EM-34, "Removal and Installation (Lower Oil Pan)".

10. Install IVT control valve covers.
FRONT TIMING CHAIN CASE

< ON-VEHICLE REPAIR >

a. Install new seal rings (1) in shaft grooves.
 • A: Bank 2
 CAUTION:
 When replacing seal rings, replace all rings with new ones on both RH and LH IVT control valve covers.

b. To check the joint between dowel pins and dowel pin holes, check the looseness in the axle direction by pushing the circumferential looseness (between dowel pins and dowel holes) by twisting in the circumferential direction.
 • A: Mating surface of magnet retarded
 • B: Moves slightly
 • C: Not shaken
 CAUTION:
 Always perform this procedure when removing because the gap between dowel pins and dowel pin holes may not be caused on purpose.

c. Install IVT covers with a new gasket to front timing chain case.
 • 1: Valve timing control cover
 • 2: Magnet retarder
 CAUTION:
 • Never face magnet retarder side down to prevent magnet retarder from dropping.
 • Check the mating surface of the magnet retarder and the drum of the exhaust side camshaft sprocket for foreign materials.
 • Align center of both shaft holes of the shaft and the intake side of the intake camshaft sprocket, and then insert them.
 • Be careful not to drop the seal ring from the shaft groove.
 • When setting the valve timing control cover in position by hand, if valve timing control cover is not centered with the valve timing case, the dowel pin of the magnet retarder may not be aligned with the dowel pin holes of the cover. In this case, return to step "b".

d. Being careful not to move seal ring from the installation groove, align the dowel pins on the front timing chain case with the holes to install valve timing control covers.
e. Tighten bolts in the numerical order as shown.

 IVT cover bolts 11.3 N·m (1.2 kg-m, 8 ft-lb)
 - A: Bank 1 (Conventional RH bank)
 - B: Bank 2 (Conventional LH bank)
 - C: Dowel pin hole

11. Apply liquid gasket and install the water pump cover, if removed.
 - Use Genuine Silicone RTV Sealant or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".

12. Install crankshaft pulley and tighten the bolt in two steps.
 - Lubricate thread and seat surface of the bolt with new engine oil.
 - For the second step angle tighten using Tool.

 Step 1 : 44.1 N·m (4.5 kg-m, 33 ft-lb)
 Step 2 : 84° - 90° degrees clockwise

 Tool number : KV10112100 (BT-8653-A)

13. Remove the Tool attached to the starter bolt hole.

 Tool number : KV10117700 (J-44716)

 CAUTION: Do not damage the ring gear teeth, or the signal plate teeth behind the ring gear, when removing the Tool.

14. Rotate crankshaft pulley in normal direction (clockwise when viewed from front) to confirm it turns smoothly.

15. Installation of the remaining components is in reverse order of removal.

Inspection After Installation

 Before starting engine, check the levels of engine coolant, engine oil and working fluid. If less than required quantity, fill to the specified level.
 - Use procedure below to check for fuel leakage.
 - Turn ignition switch ON (with engine stopped). With fuel pressure applied to fuel piping, check for fuel leakage at connection points.
 - Start engine. With engine speed increased, check again for fuel leakage at connection points.
 - Run engine to check for unusual noise and vibration.
 - Warm up engine thoroughly to make sure there is no leakage of engine coolant, engine oil, working fluid, fuel and exhaust gas.
 - Bleed air from passages in pipes and tubes of applicable lines, such as in cooling system.
• After cooling down engine, again check amounts of engine coolant, engine oil and working fluid. Refill to specified level, if necessary.
• Summary of the inspection items:

<table>
<thead>
<tr>
<th>Item</th>
<th>Before starting engine</th>
<th>Engine running</th>
<th>After engine stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine coolant</td>
<td>Level</td>
<td>Leakage</td>
<td>Level</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Level</td>
<td>Leakage</td>
<td>Level</td>
</tr>
<tr>
<td>Working fluid</td>
<td>Level</td>
<td>Leakage</td>
<td>Level</td>
</tr>
<tr>
<td>Fuel</td>
<td>Leakage</td>
<td>Leakage</td>
<td>Leakage</td>
</tr>
<tr>
<td>Exhaust gas</td>
<td>—</td>
<td>Leakage</td>
<td>—</td>
</tr>
</tbody>
</table>

*Transmission/transaxle/CVT fluid, power steering fluid, brake fluid, etc.
TIMING CHAIN

Removal and Installation

CAUTION:
- After removing timing chains, do not turn the crankshaft and camshaft separately, or the valves will strike the pistons.
- When installing camshafts, chain tensioners, oil seals, or other sliding parts, lubricate contacting surfaces with new engine oil.
- Apply new engine oil to bolt threads and seat surfaces when installing camshaft sprockets, camshaft brackets, and crankshaft pulley.

REMOVAL
1. Remove front timing chain case. Refer to EM-49, "Removal and Installation".
2. Remove the intake manifold collector. Refer to EM-24, "Removal and Installation".
3. Remove the engine oil dipstick.
4. Place paint marks on the timing chain and sprockets to indicate the correct position of the components for installation.
5. Remove the timing chain tensioner (primary).
TIMING CHAIN

< ON-VEHICLE REPAIR >

a. Pull lever down and release plunger stopper tab. Plunger stopper tab can be pushed up to release (coaxial structure with lever).

b. Insert stopper pin into timing chain tensioner (primary) body hole to hold lever, and keep the tab released. An Allen wrench [1.2 mm (0.047 in)] is used for a stopper pin as an example.

c. Insert plunger into tensioner body by pressing the slack guide.

d. Keep the slack guide pressed and hold it by pushing the stopper pin through the lever hole and body hole.

e. Remove the bolts and remove the timing chain tensioner (primary).

6. Remove the internal chain guide (1), and slack guide (2).

7. Remove timing chain (primary) and crankshaft sprocket.

CAUTION:
After removing timing chains, do not turn the crankshaft and camshaft separately, or the valves will strike the pistons.
8. Attach a suitable stopper pin (2) to the right and left timing chain tensioners (secondary) (1).
 • A: Bank 1
 • B: Bank 2

9. Remove the timing chains (secondary) with camshaft sprockets (INT) and (EXH).
 a. Insert metal or resin plate [0.5 mm (0.020 in)] into guide between timing chain (secondary) and timing chain tensioner (secondary) plunger. Remove camshaft sprocket and timing chain (secondary) with timing chain removed from guide groove.
 CAUTION:
 Timing chain tensioner plunger can move while stopper pin is inserted in timing chain tensioner. Plunger can come out of tensioner when timing chain is removed. Use caution during removal.
 • Apply paint to the timing chain and camshaft sprockets for alignment during installation.
 b. Remove the camshaft sprocket (INT) and (EXH) bolts.
 • Secure the hexagonal portion of the camshaft using a wrench to loosen the bolts.
 • Handle the sprockets as an assembly.
 c. Remove timing chains (secondary).
 CAUTION:
 • Avoid impact or dropping the camshaft sprockets.
 • Do not disassemble the camshaft sprockets (never loosen bolts (A) and (B) as shown).

10. Remove the tension guide.

INSPECTION
Check for cracks and any excessive wear of the timing chain. Replace the timing chain as necessary.

INSTALLATION
NOTE:
The figure shows the relationship between the mating mark on each timing chain and that on the corresponding sprocket with the components installed.
1. Install the tension guide.
2. Position the crankshaft so No. 1 piston is set at TDC on the compression stroke.
 • Make sure that the dowel pin hole, dowel pin and crankshaft key are located as shown.
 Camshaft dowel pin hole (intake side): at cylinder head upper face side in each bank.
 Camshaft dowel pin (exhaust side): at cylinder head upper face side in each bank.
 Crankshaft key: at cylinder head side of RH bank.

CAUTION:
Hole on small diameter side must be used for intake camshaft sprocket dowel pin. Do not misidentify (ignore big diameter side).
3. Install the timing chains (secondary) and camshaft sprockets.

CAUTION:
Matching marks between the timing chain and sprockets slip easily. Confirm all matching mark positions repeatedly during the installation process.
- Push the sleeve of the chain tensioner (secondary) and keep it pressed in with a stopper pin.

a. Align the matching marks (4), (5), (7) and (10) on the timing chain (secondary) (8) (orange link) (2) with the ones on the camshaft sprockets (INT) and (EXH) (stamped), and install them.
 - Matching marks for the camshaft sprocket (INT) are on the back side of the secondary sprocket.
 - There are two types of matching marks, round (7) and (10) oval (4) and (5) types. They should be used for the RH and LH banks, respectively.
 - RH bank: use round type (7) and (10).
 - LH bank (6): use oval type (4) and (5).

b. Align the dowel pin (3) with pin hole on the camshaft sprocket (INT) side (1), and dowel pin groove (11) with the dowel pin on the camshaft sprocket (EXH) side, and install them.
 - On the intake side, align the pin hole on the small diameter side of the camshaft front end with the dowel pin (3) on the back side of the camshaft sprocket (1), and install them.
 - On the exhaust side, align the dowel pin on the camshaft front end with the dowel pin groove (11) on the camshaft sprocket (9), and install them.
 - Camshaft sprocket bolts must be tightened in the next step. Tightening them by hand is enough to prevent the dislocation of the dowel pins (3) and dowel pin grooves (11).

- Check mating mark (punched) (D) on each camshaft sprocket are positioned on the mating marks (orange link) (C) on timing chain (secondary).
 - A: Intake side
 - B: Exhaust side

NOTE:
Mating mark (punched) in the figure is for checking loose at this step.
4. After confirming the mating marks are aligned, tighten the camshaft sprocket bolts.
 • Secure the camshaft using a wrench at the hexagonal portion to tighten the bolts.

5. Pull the stopper pins (2) out from the timing chain tensioners (secondary) (1).
 • A: RH bank
 • B: LH bank

6. Install the crankshaft sprocket on the crankshaft.
 • Make sure the mating marks on the crankshaft sprocket face the front of the engine.

7. Install the timing chain (primary).
 • Install timing chain (primary) so the mating mark (punched) (B) on camshaft sprocket (C) is aligned with the pink link (A) on the timing chain, while the mating mark (notched) (E) on the crankshaft sprocket (D) is aligned with the orange one (F) on the timing chain, as shown.
 • When it is difficult to align mating marks of the timing chain (primary) with each sprocket, gradually turn the camshaft using a wrench on the hexagonal portion to align it with the mating marks.
 • During alignment, be careful to prevent dislocation of mating mark alignments of the secondary timing chains.
 (G): Water pump
8. Install the internal chain guide (1), slack guide (2) and timing chain (primary).

CAUTION:
Do not overtighten the slack guide bolts. It is normal for a gap to exist under the bolt seats when the bolts are tightened to specification.

9. Install the timing chain tensioner (primary) for the slack guide.
 • When installing the timing chain tensioner (primary), push in the sleeve and keep it pressed in with the stopper pin.
 • Remove any dirt and foreign materials completely from the back and the mounting surfaces of the timing chain tensioner (primary).
 • After installation, pull out the stopper pin while pressing the slack guide.

10. Reconfirm that the matching marks on the sprockets and the timing chain have not slipped out of alignment.

11. Install the front timing chain case. Refer to EM-49, "Removal and Installation".
REM-66

< ON-VEHICLE REPAIR >

REAR TIMING CHAIN CASE

Exploded View

CAUTION:
• After removing timing chain, do not turn the crankshaft and camshaft separately, or the valves will strike the pistons.
• Before removing the upper oil pan, remove the crankshaft position sensor (POS).
• Be careful not to damage sensor edges.

REMOVAL
1. Remove the engine assembly. Refer to EM-95, "Removal and Installation".
2. Remove the oil pan lower and upper. Refer to EM-35, "Removal and Installation (Upper Oil Pan)".
3. Remove the front timing chain case. Refer to EM-49, "Exploded View".
4. Remove the timing chains (primary) and (secondary). Refer to EM-59, "Removal and Installation".
5. Remove the rear timing chain case.

CAUTION:
• Do not remove the plate metal cover for the oil passage.
• After removing the chain case, do not apply any load to the case that might bend it.
a. Loosen and remove the rear timing chain case bolts in the order as shown.

b. Cut the sealant using Tool and remove the rear timing chain case.

 Tool number : KV10111100 (J-37228)

 CAUTION:
 • Be careful not to damage the mating surface.
 • Do not insert a screwdriver, this will damage the mating surfaces.

c. Slide the Tool by tapping its side with a hammer to remove the rear timing chain case from the cylinder block.

6. Remove O-rings to timing chain case and cylinder block.
7. Use a scraper to remove all of the old Silicone RTV Sealant from the front and rear timing chain case and opposite mating surfaces.

 CAUTION:
 Do not damage the mating surfaces.
REAR TIMING CHAIN CASE

8. Remove all old Silicone RTV Sealant from all the bolt holes and bolts.
 CAUTION:
 Do not damage the threads or mating surfaces.

INSTALLATION

1. Install O-rings on cylinder block.

2. Apply Genuine Silicone RTV Sealant or equivalent, to the rear timing chain case using Tool as shown. Refer to GI-15, "Recommended Chemical Products and Sealants".

 Tool number : WS39930000 (—)

 CAUTION:
 - For "a", completely wipe out liquid gasket extended on a portion touching at engine coolant.
 - Apply liquid gasket on installation position of water pump and cylinder completely.
3. Align the rear timing chain case and water pump assembly with the dowel pins (RH and LH) on the cylinder block and install the case. Make sure the O-rings stay in place during installation.

a. Tighten the bolts in the numerical order as shown. There are two bolt lengths used. Follow the chart below for proper bolt length specifications.
b. After all bolts are initially tightened, retighten them to the specification in the numerical order as shown.
4. Install the primary and secondary timing chains. Refer to EM-59, *Removal and Installation*.
5. Install the front timing chain case. Refer to EM-49, *Removal and Installation*.
6. Install the oil pan upper and lower. Refer to EM-35, *Removal and Installation (Upper Oil Pan)*.
7. Install the engine assembly. Refer to EM-95, *Removal and Installation*.

<table>
<thead>
<tr>
<th>Bolt length</th>
<th>Bolt position</th>
<th>Torque specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm</td>
<td>1, 2, 3, 6, 7, 8, 9, 10</td>
<td>12.7 N·m (1.3 kg-m, 9 ft-lb)</td>
</tr>
<tr>
<td>16 mm</td>
<td>4, 5, 11</td>
<td>12.7 N·m (1.3 kg-m, 9 ft-lb)</td>
</tr>
<tr>
<td>16 mm</td>
<td>12 - 25</td>
<td>12.7 N·m (1.3 kg-m, 9 ft-lb)</td>
</tr>
</tbody>
</table>
CAUTION:
Apply new engine oil to parts marked in illustration before installation.

Removal and Installation

REMOVAL
1. Remove the timing chains. Refer to EM-59, "Removal and Installation".
2. Remove camshaft position brackets (RH shown, LH similar).

3. Remove the intake and exhaust camshaft brackets and the camshafts.
 • Mark the camshafts, camshaft brackets, and bolts so they are placed in the same position and direction for installation.
 • Equally loosen the camshaft bracket bolts in several steps in the numerical order as shown.

4. Remove valve lifters, if necessary.
 NOTE:
 Identify installation positions to ensure proper installation.

5. Remove secondary timing chain tensioner from cylinder head.
 • Remove secondary tensioner with its stopper pin attached.
 NOTE:
 Stopper pin was attached when secondary timing chain was removed.

INSTALLATION
1. Before installation, remove any old Silicone RTV Sealant from component mating surfaces using a scraper.
 • Remove the old Silicone RTV Sealant from the bolt holes and threads.
 • Do not scratch or damage the mating surfaces.

2. Before installing the front cam bracket, remove the old Silicone RTV Sealant from the mating surface using a scraper.
 • Do not scratch or damage the mating surface.

3. Turn the crankshaft until No. 1 piston is set at TDC on the compression stroke.
 • The crankshaft key should line up with the right bank cylinder center line as shown.

4. Install camshaft chain tensioners on both sides of cylinder head. Refer to EM-49, “Removal and Installation”.

5. Install valve lifters, if removed.
 NOTE:
 Install them in original positions.
6. Install exhaust and intake camshafts and camshaft brackets.
 - Intake camshaft has a drill mark on camshaft sprocket mounting flange.

 - Follow your identification marks made during removal, or follow the identification marks that are present on the new camshafts components for proper placement and direction of the components.

<table>
<thead>
<tr>
<th>Bank</th>
<th>INT/EXH</th>
<th>ID mark</th>
<th>Drill mark</th>
<th>Paint marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>INT</td>
<td>1A</td>
<td>Yes</td>
<td>Blue, No</td>
</tr>
<tr>
<td></td>
<td>EXH</td>
<td>1C</td>
<td>No</td>
<td>No, Blue</td>
</tr>
<tr>
<td>LH</td>
<td>INT</td>
<td>1B</td>
<td>Yes</td>
<td>Blue, No</td>
</tr>
<tr>
<td></td>
<td>EXH</td>
<td>1D</td>
<td>No</td>
<td>No, Blue</td>
</tr>
</tbody>
</table>

 - Position the camshafts:
 RH exhaust camshaft dowel pin at about 10 o'clock.
 LH exhaust camshaft dowel pin at about 2 o'clock.
7. Before installing camshaft brackets, apply sealant to mating surface of No. 1 camshaft bracket.
 - Use Genuine Silicone RTV Sealant, or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".

 - Before installation, wipe off any protruding sealant.
 - Refer to EM-4, "Precaution for Liquid Gasket".

 - Install camshaft brackets in their original positions and direction. Align the stamp marks as shown.
 - If checking and adjusting any part of valve assembly or camshaft, check valve clearance according to the reference data. Refer to EM-17, "Valve Clearance".

 | Valve clearance (cold) Intake | : 0.26 - 0.34 mm (0.010 - 0.013 in) |
 | Valve clearance (cold) Exhaust | : 0.29 - 0.37 mm (0.011 - 0.015 in) |
• Tighten the camshaft brackets in the three steps, in numerical order as shown.

<table>
<thead>
<tr>
<th></th>
<th>Torque Specifications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.96 N·m (0.2 kg-m, 17 in-lb)</td>
<td>Tighten No. 7 - 10, then tighten 1 - 6 in numerical order as shown.</td>
</tr>
<tr>
<td>2</td>
<td>5.88 N·m (0.6 kg-m, 52 in-lb)</td>
<td>Tighten in numerical order as shown.</td>
</tr>
<tr>
<td>3</td>
<td>10.41 N·m (1.10 kg-m, 8 ft-lb)</td>
<td>Tighten No. 1 - 6 in the numerical order as shown.</td>
</tr>
</tbody>
</table>

8. Measure difference in levels between front end faces of No. 1 camshaft bracket and cylinder head.

 Standard: – 0.14 mm (– 0.0055 in)

 • If measurement is outside the specified range, re-install camshaft and camshaft bracket.

9. Install camshaft position sensors (PHASE) (RH and LH bank.)
10. Install the fuel rail and injectors. Refer to EM-40, "Removal and Installation".
11. Install the timing chains. Refer to EM-59, "Removal and Installation".

Inspection After Removal

INSPECTION

Camshaft Visual Check

Check camshaft for scratches, seizure and wear. Replace if necessary.

Camshaft Runout
CAMSHAFT

< ON-VEHICLE REPAIR >

1. Put V-block on precise flat bed and support No. 2 and No. 4 journal of camshaft as shown.
2. Set dial gauges vertically to No. 3 journal as shown.
3. Turn camshaft in one direction slowly by hand, measure the camshaft runout on the dial gauges.
 • Runout is the largest indicator reading after one full revolution.

 Camshaft Runout
 - Standard : Less than 0.02 mm (0.0008 in)
 - Limit : 0.05 mm (0.0020 in)

4. If actual runout exceeds the limit, replace the camshaft.

Camshaft Cam Lobe Height
1. Measure camshaft cam lobe height as shown. Refer to EM-122, "Camshaft".
2. If wear has reduced the lobe height below specifications, replace the camshaft.

Camshaft Journal Clearance

Outer Diameter of Camshaft Journal
• Measure outer diameter of camshaft journal as shown.

<table>
<thead>
<tr>
<th>Standard outer diameter</th>
<th>No.1</th>
<th></th>
<th>Standard outer diameter</th>
<th>No.2, 3, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: 25.935 - 25.955 mm</td>
<td></td>
<td></td>
<td>: 23.445 - 23.465 mm</td>
</tr>
<tr>
<td></td>
<td>(1.0211 - 1.0218 in)</td>
<td></td>
<td></td>
<td>(0.9230 - 0.9238 in)</td>
</tr>
</tbody>
</table>

Inner Diameter of Camshaft Bracket
1. Tighten camshaft bracket bolt with specified torque.
2. Using inside micrometer, measure inner diameter "A" of camshaft bearing.

<table>
<thead>
<tr>
<th>Standard inner diameter</th>
<th>No.1</th>
<th></th>
<th>Standard inner diameter</th>
<th>No.2, 3, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: 26.000 - 26.021 mm</td>
<td></td>
<td></td>
<td>: 23.500 - 23.521 mm</td>
</tr>
<tr>
<td></td>
<td>(1.0236 - 1.0244 in)</td>
<td></td>
<td></td>
<td>(0.9252 - 0.9260 in)</td>
</tr>
</tbody>
</table>

Calculation of Camshaft Journal Clearance
(Journal clearance) = (inner diameter of camshaft bracket) – (outer diameter of camshaft journal)
CAMSHAFT

When out of the specified range, replace either or both camshaft and cylinder head.

NOTICE:
Inner diameter of camshaft bracket is manufactured together with cylinder head. Replace the whole cylinder head assembly.

Camshaft End Play
1. Install the camshaft in the cylinder head.
2. Install dial gauge in thrust direction on front end of camshaft. Measure end play when camshaft is moved forward/backward (in direction to axis) as shown.

 Standard : 0.115 - 0.188 mm (0.0045 - 0.0074 in)
 Limit : 0.24 mm (0.0094 in)

 • If out of the specified range, replace with new camshaft and measure again.
 • If out of the specified range again, replace with new cylinder head.

Camshaft Sprocket Runout
1. Put V-block on precise flat bed and support No. 2 and No. 4 journal of camshaft as shown.
2. Install camshaft sprocket on camshaft.
3. Measure camshaft sprocket runout.

 Runout : Less than 0.15 mm (0.0059 in)
4. If sprocket runout exceeds the limit, replace camshaft sprocket.

Valve Lifter
• Check if the surface of the valve lifter has any excessive wear or cracks, replace as necessary.

Valve Lifter Clearance

Outer Diameter of Valve Lifter
• Measure the outer diameter of the valve lifter. Refer to **EM-122, “Camshaft”**.
• If out of the specified range, replace the valve lifter.

Valve Lifter Bore Diameter
• Using inside micrometer, measure diameter of valve lifter bore of cylinder head. Refer to **EM-122, “Camshaft”**.
• If out of the specified range, replace the cylinder head assembly.

Calculation of Valve Lifter Clearance
• (Valve lifter clearance) = (hole diameter for valve lifter) – (outer diameter of valve lifter) Refer to **EM-122, “Camshaft”**.
• If out of specified range, replace either or both valve lifter and cylinder head assembly.

Inspection after Installation

INSPECTION OF CAMSHAFT SPROCKET (INT) OIL GROOVE

CAUTION:
• Perform this inspection only when DTC P0011 is detected in self-diagnostic results of CONSULT III and it is directed according to inspection procedure of EC section. Refer to **EC-151, “Diagnosis Procedure”**.
• Check when engine is cold so as to prevent burns from any splashing engine oil.

1. Check engine oil level. Refer to **LU-8, “Inspection”**.
2. Perform the following procedure so as to prevent the engine from being unintentionally started while checking.
 a. Release fuel pressure. Refer to **EC-576, “Inspection”**.
 b. Disconnect ignition coil and injector harness connectors if practical.
3. Remove IVT control solenoid valve.
4. Crank engine, and then make sure that engine oil comes out from IVT control cover oil hole. End cranking after checking.

WARNING:
Be careful not to touch rotating parts (drive belts, idler pulley, and crankshaft pulley, etc.).

CAUTION:
• Engine oil may squirt from IVT control solenoid valve installation hole during cranking. Use a shop cloth to prevent engine oil from splashing on worker, engine components and vehicle.
• Do not allow engine oil to get on rubber components such as drive belts or engine mount insulators. Immediately wipe off any splashed engine oil.
5. Clean oil groove between oil strainer and IVT control solenoid valve if engine oil does not come out from IVT control cover oil hole.

6. Remove components between IVT control solenoid valve and camshaft sprocket (INT), and then check each oil groove for clogging.
 • Clean oil groove if necessary.

7. After inspection, installation of the remaining components is in the reverse order of removal.
OIL SEAL

< ON-VEHICLE REPAIR >

OIL SEAL

Removal and Installation of Valve Oil Seal

REMOVAL

1. Turn crankshaft until the cylinder requiring new oil seals is at TDC. This will prevent valve from dropping into cylinder.

CAUTION:
When rotating crankshaft, be careful to avoid scarring the front cover with the timing chain.

2. Remove camshaft relating to valve oil seal to be removed. Refer to EM-71, "Removal and Installation".

3. Remove valve lifters. Refer to EM-71, "Removal and Installation".

4. Remove valve collet, valve spring retainer and valve spring using Tool.

CAUTION:
When working, take care not to damage valve lifter holes.

- Tool numbers: KV10116200 (J-26336-A)
 - KV10115900 (J-26336-20)
 - KV10109220 (—)

 • Compress valve spring using Tool attachment, adapter.
 • Remove valve collet with magnet hand.

5. Remove valve oil seal using Tool.

 Tool number: KV10107902 (J-38959)

INSTALLATION

1. Apply new engine oil to new valve oil seal joint surface and seal lip.

2. Press in valve oil seal to height "H" using Tool to specified height.

 Tool number: — (J-39386)

NOTE:
Dimension "H": height measured before valve spring seat installation.

Intake and exhaust: 14.3 - 14.9 mm (0.563 - 0.587 in)

3. Installation of the remaining components is in the reverse order of removal.

Removal and Installation of Front Oil Seal

REMOVAL

1. Remove the following parts:
 • Engine under cover. Refer to EXT-13, "Exploded View".
 • Drive belts. Refer to EM-14, "Removal and Installation".

Revision: November 2009

EM-81

2010 Maxima
OIL SEAL

< ON-VEHICLE REPAIR >

- Radiator fan. Refer to CO-16, "Removal and Installation".

2. Remove the starter motor. Refer to STR-17, "Removal and Installation".

3. Remove the crankshaft pulley as follows:
 a. Lock the drive plate using Tool attached to the starter bolt hole.

 Tool number : KV10117700 (J-44716)

 CAUTION:
 Do not damage the ring gear teeth, or the signal plate teeth behind the ring gear, when setting the Tool.

 b. Loosen crankshaft pulley and locate bolt seating surface at 10 mm (0.39 in) from its original position.

 c. Position a pulley puller at recess hole of crankshaft pulley to remove crankshaft pulley.

 CAUTION:
 Do not use a puller claw on crankshaft pulley periphery.

4. Remove front oil seal from front cover.

 CAUTION:
 Be careful not to damage front cover or crankshaft.

INSTALLATION

1. Apply new engine oil to new oil seal and install.
 • Install new oil seal in the direction as shown.

 CAUTION:
 Press fit straight and avoid causing burrs or tilting the oil seal.
OIL SEAL

ON-VEHICLE REPAIR>

- Press-fit oil seal until it becomes flush with the timing chain case end face, using suitable tool.
- Make sure the garter spring in the oil seal is in position and seal lip is not inverted.

2. Install crankshaft pulley and tighten the bolt in two steps.
 - Lubricate thread and seat surface of the bolt with new engine oil.
 - For the second step angle tighten using Tool.

 Step 1 : 44.1 N·m (4.5 kg-m, 33 ft-lb)
 Step 2 : 84° - 90° degrees clockwise

 Tool number : KV10112100 (BT-8653-A)

3. Remove the Tool attached to the starter bolt hole.

 Tool number : KV10117700 (J-44716)

CAUTION:
- Do not damage the ring gear teeth, or the signal plate teeth behind the ring gear, when removing the Tool.

4. Installation of the remaining components is in reverse order of removal.

Removal and Installation of Rear Oil Seal

REMOVAL

1. Remove the upper oil pan. Refer to **EM-35, "Removal and Installation (Upper Oil Pan)"**.
2. Remove drive plate. Refer to **EM-119, "Dowel Pin Alignment"**.
3. Remove rear oil seal retainer using Tool.

 Tool Number : KV10111100 (J-37228)

CAUTION:
- Be careful not to damage mating surface.
- If rear oil retainer is removed, replace it with a new one

NOTE:
Rear oil seal and retainer form a single part and are replaced as an assembly.

INSTALLATION

1. Remove old liquid gasket material from mating surface of cylinder block and oil pan using a suitable scraper.
2. Install the rear oil seal retainer using Tool (A).

 Tool number : — (J-47128)

a. Loosen the wing nut (B) on the end of the Tool (A).
b. Insert the arbor (D) into the crankshaft pilot hole until the outer lip (C) of the Tool (A) covers the edge of the crankshaft sealing surface.
c. Tighten the wing nut (B) to secure the Tool (A) to the crankshaft.

d. Apply sealant to rear oil seal retainer as shown. Use Genuine Silicone RTV Sealant, or equivalent. Refer to GI-15, “Recommended Chemical Products and Sealants”. Assembly should be completed within 5 minutes after coating.

e. Lubricate the sealing surface of the new rear main seal with new engine oil.
f. Slide the new rear main seal (1) over the Tool (A) and onto the crankshaft.
g. Loosen the wing nut and push the threaded rod into the handle to remove the Tool (A).
h. Tighten the rear oil seal retainer bolts to specification.

3. Installation of the remaining components is in the reverse order of removal.
 CAUTION:
 • When replacing an engine or transmission you must make sure the dowels are installed correctly during re-assembly.
 • Improper alignment caused by missing dowels may cause vibration, oil leaks or breakage of drivetrain components.
Removal and Installation

1. Cylinder head bolt
2. Cylinder head
3. Cylinder head gasket
4. Engine block

A. Follow installation procedure

REMOVAL
1. Remove the engine from the vehicle. Refer to EM-95, "Removal and Installation".
2. Remove the rear timing chain case. Refer to EM-66, "Removal and Installation".
3. Remove the intake manifold. Refer to EM-27, "Removal and Installation".
4. Remove the intake and exhaust camshafts. Refer to EM-71, "Removal and Installation".
5. Remove the coolant outlet housing. Refer to CO-24, "Removal and Installation".
6. Remove the RH and LH cylinder head bolts, with power tool.
 • The bolts should be loosened gradually in three stages.
 • Loosen the bolts in the numerical order as shown.
7. Remove cylinder heads and gaskets.
 - Discard the cylinder head gaskets and use new gaskets for installation.

INSTALLATION

1. Turn the crankshaft until No. 1 piston is set at TDC on the compression stroke.
 - The crankshaft key should line up with the right bank cylinder center line as shown.

2. Install new gaskets on the cylinder heads.
 CAUTION:
 Do not rotate crankshaft and camshaft separately or valves will strike piston heads.

3. Inspect the cylinder head bolts before installing the cylinder heads.
 CAUTION:
 Cylinder head bolts are tightened by degree rotation tightening method. Whenever the size difference between d1 and d2 exceeds the limit, replace the bolts with new ones.

 - Limit (d1 - d2) : 0.11 mm (0.0043 in)
 - Lubricate threads and seat surfaces of the bolts with new engine oil.
4. Install the cylinder heads on the cylinder block. Tighten the cylinder head bolts in the five steps in the numerical order as shown using Tool.

 Tool Number : KV10112100 (BT-8653-A)

 • Tightening procedure:

 Cylinder head bolts
 Step a : 98.1 N·m (10 kg-m, 72 ft-lb)
 Step b : Loosen in the reverse order of tightening
 Step c : 32.9 N·m (4.0 kg-m, 29 ft-lb)
 Step d : 103° degrees rotation clockwise
 Step e : 103° degrees rotation clockwise

5. Installation of the remaining components is in the reverse order of removal.
CAUTION:

- When installing camshafts, chain tensioners, oil seals, or other sliding parts, lubricate contacting surfaces with new engine oil.
- Apply new engine oil to threads and seat surface when installing cylinder head, camshaft sprocket, crankshaft pulley, and camshaft bracket.
- Attach tags to valve lifters so as not to mix them up.

1. Valve collet
2. Valve spring retainer
3. Valve spring
4. Valve oil seal
5. Valve spring seat
6. Valve guide
7. Cylinder head
8. Valve seat (EXH)
9. Valve seat (INT)
10. Valve (EXH)
11. Valve (INT)
DISASSEMBLY

1. Remove spark plug.
2. Remove valve lifter.
 • Identify installation positions, and store them without mixing them up.
3. Remove valve collet.
 • Compress valve spring and remove valve collet with magnet hand using Tool.
 CAUTION:
 When working, take care not to damage valve lifter holes.

 Tool numbers : KV10109220 (—)
 : KV10116200 (J-26336-A)
 : KV10115900 (J-26336-20)
4. Remove valve spring retainer, valve spring and valve spring seat.
5. Push valve stem to combustion chamber side, and remove valve.
 • Identify installation positions, and store them without mixing them up.
6. Remove valve oil seals using Tool.

 Tool number : KV10107902 (J-38959)
7. If valve seat must be replaced, refer to EM-90, "Inspection After Disassembly".
8. If valve guide must be replaced, refer to EM-90, "Inspection After Disassembly".
9. Remove spark plug tube, as necessary.
 • Using pair of pliers, pull spark plug tube out of cylinder head.
 CAUTION:
 • Take care not to damage cylinder head.
 • Once removed, spark plug tube will be deformed and cannot be reused. Do not remove it unless absolutely necessary.

ASSEMBLY

1. When valve guide is removed, install it. Refer to EM-90, "Inspection After Disassembly".
2. When valve seat is removed, install it. Refer to EM-90, "Inspection After Disassembly".
3. Install valve oil seals using Tool.

 Tool number : — (J-39386)

 Height "H" (Without valve spring seat installed)
 Intake and exhaust : 14.3 - 14.9 mm (0.563 - 0.587 in)
4. Install valve spring seat.
5. Install valves.
 • Install it in the original position.
 NOTE:
 Larger diameter valves are for intake side.
6. Install valve spring (uneven pitch type) with narrow pitch end (paint mark) to cylinder head side (valve spring seat side).

7. Install valve spring retainer.

8. Install valve collet.
 • Compress valve spring with valve spring compressor, attachment and adapter using Tool. Install valve collet with magnet hand.
 CAUTION:
 When working, take care not to damage valve lifter holes.
 • Tap valve stem edge lightly with plastic hammer after installation to check its installed condition.

 Tool numbers
 - KV10109220 (—)
 - KV10116200 (J-26336-A)
 - KV10115900 (J-26336-20)

9. Install valve lifter.
 • Install it in the original position.

10. Install spark plug tube.
 • Press-fit spark plug tube as follows:
 a. Remove old liquid gasket adhering to cylinder head mounting hole.
 b. Apply sealant to area within approximately 12 mm (0.47 in) from edge of spark plug tube press-fit side. Use Genuine High Strength Locking Sealant or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".
 c. Press-fit spark plug tube so that its height "H" is as specified in using suitable drift.

 Press-fit height “H” : 37.7 - 38.7 mm (1.484 - 1.529 in)
 CAUTION:
 • When press-fitting, take care not to deform spark plug tube.
 • After press-fitting, wipe off liquid gasket protruding onto cylinder-head upper face.

11. Install spark plug.

Inspection After Disassembly

CYLINDER HEAD DISTORTION
Clean the surface of the cylinder head. Use a reliable straightedge and feeler gauge to check the flatness of cylinder head surface.
Check along six positions as shown.

Head surface distortion
- **Limit**: 0.1 mm (0.004 in)
- **Standard**: Less than 0.03 mm (0.0012 in)

If beyond the specified limit, resurface or replace it. The limit for cylinder head resurfacing is determined by the cylinder block resurfacing.

Resurfacing Limit
- Amount of cylinder head resurfacing is “A”.
- Amount of cylinder block resurfacing is “B”.
- The maximum limit: A + B = 0.2 mm (0.008 in)

After resurfacing cylinder head, check that camshaft rotates freely by hand. If resistance is felt, cylinder head must be replaced.

Nominal cylinder head height: 126.3 - 126.5 mm (4.972 - 4.980 in)

VALVE GUIDE CLEARANCE

1. Measure valve deflection as shown. (Valve and valve guide mostly wear in this direction.)

 Valve deflection limit (dial gauge reading)
 - **Intake**: 0.24 mm (0.0094 in)
 - **Exhaust**: 0.28 mm (0.0110 in)

2. If it exceeds the limit, check valve to valve guide clearance.
 a. Measure valve stem diameter and valve guide inner diameter. Refer to EM-124, "Cylinder Head".
 b. Check that clearance is within specification. (Valve guide clearance) = (Valve guide inner diameter) - (Valve stem diameter)

 Valve to valve guide clearance standard
 - **Intake**: 0.020 - 0.053 mm (0.0008 - 0.0021 in)
 - **Exhaust**: 0.040 - 0.073 mm (0.0016 - 0.0029 in)

 Valve to valve guide clearance limit
 - **Intake**: 0.08 mm (0.0031 in)
 - **Exhaust**: 0.1 mm (0.004 in)

 c. If it exceeds the limit, replace valve or valve guide.

VALVE GUIDE REPLACEMENT

When valve guide is removed, replace with oversized [0.2 mm (0.008 in)] valve guide.
1. To remove valve guide, heat cylinder head to 110° to 130°C (230° to 266°F) by soaking in heated oil.

2. Drive out the valve guide with a press [under a 20 kN (2.2 US ton) pressure] or hammer and suitable tool.

3. Ream cylinder head valve guide hole.

Valve guide hole diameter: 10.175 - 10.196 mm (0.4006 - 0.4014 in)
(for service parts), intake and exhaust

4. Heat cylinder head to 110° to 130°C (230° to 266°F) by soaking in heated oil and press new valve guide from camshaft side into the cylinder head to the dimensions as shown.

Projection "L": 12.6 - 12.8 mm (0.496 - 0.504 in)
5. Using a valve guide reamer, apply a reamer finish to the valve guide.

<table>
<thead>
<tr>
<th>Intake and exhaust</th>
<th>6.000 - 6.018 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>finished size</td>
<td>(0.2362 - 0.2369 in)</td>
</tr>
</tbody>
</table>

VALVE SEAT CONTACT
- After confirming that the dimensions of valve guides and valves are within specifications, perform this procedure.
- Apply prussian blue onto contacting surface of valve seat to check the condition of the valve contact on the surface.
- Check if the contact area band is continuous all around the circumference.
- If not, grind to adjust valve fitting and check again. If the contacting surface still has N.G conditions even after the re-check, replace valve seat.

VALVE SEAT REPLACEMENT
1. Bore out old seat until it collapses. Boring should not continue beyond the bottom face of the seat recess in cylinder head. Set the machine depth stop to ensure this.
2. Ream cylinder head recess for service valve seat.

<table>
<thead>
<tr>
<th>Oversize</th>
<th>0.5 mm (0.020 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>38.500 - 38.516 mm</td>
</tr>
<tr>
<td></td>
<td>(1.5157 - 1.5164 in)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>32.100 - 32.116 mm</td>
</tr>
<tr>
<td></td>
<td>(1.2638 - 1.2644 in)</td>
</tr>
</tbody>
</table>

Be sure to ream in circles concentric to the valve guide center. This will enable valve seat to fit correctly.
3. Heat cylinder head to 110° to 130°C (230° to 266°F) by soaking in heated oil.
4. Press fit valve seat until it seats on the bottom.
5. Cut or grind valve seat using suitable tool to the specified dimensions. Refer to EM-124, "Cylinder Head".
6. After cutting, lap valve seat with abrasive compound.
7. Check valve seating condition.

- **Seat face angle “α”**: 45° 15’ - 45° 45’ degrees/minutes
- **Contacting width “W” for intake**: 1.18 - 1.22 mm (0.0465 - 0.0480 in)
- **Contacting width “W” for exhaust**: 1.38 - 1.42 mm (0.0543 - 0.0559 in)
8. Use a depth gauge to measure the distance between the mounting surface of the cylinder head spring seat and the valve stem end. If the distance is shorter than specified, repeat step 5 to adjust it. If it is longer, replace the valve seat with a new one.

Valve seat resurface limit “L” intake : 41.16 - 41.76 mm (1.6205 - 1.6441 in)
Valve seat resurface limit “L” exhaust : 41.09 - 41.69 mm (1.6177 - 1.6413 in)

VALVE SPRING SQUARENESS
Set try square along the side of valve spring and rotate the spring. Measure the maximum clearance between the top face of spring and try square.

Out-of-square limit : Less than 2.0 mm (0.079 in)

VALVE SPRING DIMENSIONS AND VALVE SPRING PRESSURE LOAD
Check valve spring pressure at specified spring height.

Standard : 166 - 188 N (16.9 - 19.2 kg, 37.3 - 42.3 lb) at height 37.0 mm (1.457 in)
Limit : 373 - 421 N (38.0 - 42.9 kg, 84 - 95 lb) at height 27.2 mm (1.071 in)

If it is not within specifications, replace the spring.
WARNING:
- Place chocks at front and back of rear wheels.
- For engines not equipped with engine slingers, attach proper slingers and bolts as described in the NISSAN Parts Catalog.

CAUTION:
- Do not start working until exhaust system and coolant are cool.
ENGINE ASSEMBLY

< REMOVAL AND INSTALLATION >

- If items or work required are not covered by the engine main body section, follow the applicable procedures.
- Use the correct supporting points for lifting and jacking. Refer to GI-30, "Garage Jack and Safety Stand".
- In removing the drive shafts, be careful not to damage any transaxle grease seals.
- Before separating the engine and transaxle, remove the crankshaft position sensor (POS). Refer to EM-34, "Exploded View".
- Do not damage the edge of the crankshaft position sensor (POS) or the ring gear teeth.

REMOVAL

1. Release fuel pressure. Refer to EC-576, "Inspection".
2. Drain coolant. Refer to CO-11, "Changing Engine Coolant".
3. Drain power steering fluid. Refer to ST-13, "Draining".
4. Drain transaxle fluid. Refer to TM-150, "Changing".
5. Remove the engine under cover. Refer to EXT-13, "Exploded View".
6. Remove the engine room cover. Refer to EM-22, "Removal and Installation".
7. Remove front air duct, air duct hose and resonator assembly and air cleaner case assembly. Refer to EM-23, "Removal and Installation".
8. Remove battery. Refer to PG-65, "Removal and Installation (Battery)".
9. Remove ECM.
10. Remove transmission control module. Refer to TM-163, "Removal and Installation".
11. Remove battery ground cable with current sensor.
12. Remove battery tray and bracket. Refer to PG-66, "Removal and Installation (Battery Tray)".
13. Remove cowl top extension. Refer to EXT-18, "Removal and Installation".
14. Remove lower cowl top extension brace. Refer to EXT-17, "Exploded View".
15. Remove IPDM E/R. Refer to PCS-41, "Removal and Installation".
16. Remove upper radiator hose.
17. Disconnect CVT cooler hoses.
18. Disconnect fuel hose quick connection at vehicle piping side. Refer to EM-40, "Removal and Installation".
19. Disconnect EVAP vacuum hose.
20. Disconnect heater hoses (engine side).
21. Remove coolant reservoir tank.
22. Disconnect transaxle shift control cables.
23. Remove lower radiator hose.
24. Disconnect brake booster vacuum hose.
25. Remove power steering reservoir.
27. Remove RH engine mount.
28. Remove the cooling fan assembly. Refer to CO-16, "Removal and Installation".
29. Discharge and recover the R134a refrigerant. Refer to HA-34, "Collection and Charge".
30. Remove the front drive shafts. Refer to FAX-10, "Removal and Installation (Left Side)" and FAX-11, "Removal and Installation (Right Side)".
31. Remove the rear lower insulator and torque rod.
32. Remove the front exhaust tube. Refer to EX-6, "Removal and Installation".
33. Disconnect the A/C high side and low side hoses from the A/C compressor. Refer to HA-49, "HIGH-PRESSURE FLEXIBLE HOSE : Removal and Installation for High-Pressure Flexible Hose", HA-48, "LOW-PRESSURE FLEXIBLE HOSE : Removal and Installation for Low-Pressure Flexible Hose".

Revision: November 2009

EM-96

2010 Maxima
34. Install engine slingers into front of LH cylinder head and rear of RH cylinder head.
 • (A): RH cylinder head
 • (B): LH cylinder head

35. Remove rear cover plate.
36. Remove the torque converter bolts.
37. Disconnect engine mount vacuum hoses.
38. Position a suitable support table under suspension member and engine assembly.
39. For additional safety, secure the engine in position with suitable tool.
40. Remove suspension member bolts. Refer to FSU-16, "Removal and Installation".
41. Carefully lower the engine, transaxle assembly and suspension member using Tool, avoiding interference with the vehicle body.

 Tool number : KV101J0010 (J-47242)

 CAUTION:
 • Before and during this procedure, always check if any harnesses are left connected.
 • Avoid any damage to, or any oil/grease smearing or spills onto the engine mount insulators.

42. Remove the starter motor. Refer to STR-17, "Removal and Installation".
43. Remove the crankshaft position sensor (POS). Refer to EM-34, "Exploded View".
44. Remove engine and transaxle harness, if necessary.
45. Separate the engine and transaxle from the suspension member and
46. Separate the engine from the transaxle.
47. Remove the drive plate. Refer to EM-119, "Dowel Pin Alignment".
48. Mount the engine on a suitable engine stand.
49. Drain engine oil. Refer to LU-9, "Changing Engine Oil".

INSTALLATION
Installation is in the reverse order of removal.
• Tighten transmission bolts to specification. Refer to TM-182, "Removal and Installation".

INSPECTION AFTER INSTALLATION
• Before starting engine, check the levels of engine coolant, engine oil and working fluid. If less than required quantity, fill to the specified level.
• Use procedure below to check for fuel leakage.
• Turn ignition switch ON (with engine stopped). With fuel pressure applied to fuel piping, check for fuel leakage at connection points.
ENGINE ASSEMBLY

< REMOVAL AND INSTALLATION >

- Start engine. With engine speed increased, check again for fuel leakage at connection points.
- Run engine to check for unusual noise and vibration.
- Warm up engine thoroughly to make sure there is no leakage of engine coolant, engine oil, working fluid, fuel and exhaust gas.
- Bleed air from passages in pipes and tubes of applicable lines, such as in cooling system.
- After cooling down engine, again check amounts of engine coolant, engine oil and working fluid. Refill to specified level, if necessary.
- Summary of the inspection items:

<table>
<thead>
<tr>
<th>Item</th>
<th>Before starting engine</th>
<th>Engine running</th>
<th>After engine stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine coolant</td>
<td>Level</td>
<td>Leakage</td>
<td>Level</td>
</tr>
<tr>
<td>Engine oil</td>
<td>Level</td>
<td>Leakage</td>
<td>Level</td>
</tr>
<tr>
<td>Working fluid</td>
<td>Level</td>
<td>Leakage</td>
<td>Level</td>
</tr>
<tr>
<td>Fuel</td>
<td>Leakage</td>
<td>Leakage</td>
<td>Leakage</td>
</tr>
<tr>
<td>Exhaust gas</td>
<td>—</td>
<td>Leakage</td>
<td>—</td>
</tr>
</tbody>
</table>

*Transmission/transaxle/CVT fluid, power steering fluid, brake fluid, etc.
Disassembly and Assembly

1. Drive plate reinforcement
2. Drive plate
3. Rear oil seal retainer
4. Knock sensor upper main bearing
5. Cylinder block
6. Thrust bearing (upper)
7. Main bearing (upper)
8. Crankshaft
9. Crankshaft key

Revision: November 2009
CYLINDER BLOCK

< DISASSEMBLY AND ASSEMBLY >

<table>
<thead>
<tr>
<th>10. Thrust bearing (lower)</th>
<th>11. Main bearing (lower)</th>
<th>12. Main bearing cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Crankshaft side</td>
<td>B. Chamfered</td>
<td>C. Follow installation procedure</td>
</tr>
</tbody>
</table>

CAUTION:
- Apply new engine oil to parts as marked in illustrations before installation.
- Place removed parts such as bearings and bearing caps in their proper order and direction.
- When installing the connecting rod nuts, and main bearing cap bolts, apply new engine oil to the threads and mating surfaces
- Do not allow any magnetic materials to contact the signal plate teeth on the drive plate.

DISASSEMBLY

1. Remove the engine assembly. Refer to EM-95, "Removal and Installation".
2. Install the engine on engine stand.
3. Remove the knock sensor.

 CAUTION:
 Carefully handle sensor avoiding shocking it.

4. Drain the engine of all coolant and oil.
5. Remove the oil pan. Refer to EM-35, "Removal and Installation (Upper Oil Pan)".
6. Remove the crankshaft pulley.
 • Use a suitable tool to prevent the crankshaft from turning.
7. Remove the timing chain. Refer to EM-59, "Removal and Installation".
8. Remove the cylinder head. Refer to EM-85, "Removal and Installation".
9. Remove pilot converter.

 Tool number : ST16610001 (J-23907)

10. Cut away liquid gasket and remove rear oil seal retainer using Tool. Refer to EM-4, "Precaution for Liquid Gasket".

 Tool number : KV10111100 (J-37228)

CAUTION:
- Be careful not to damage mounting surface.
- If rear oil seal retainer is removed, replace it with a new one.

NOTE:
Rear oil seal and retainer form a single part and are replaced as an assembly.
11. Remove the piston and connecting rod assemblies.
 a. Position the crankshaft pin corresponding to the connecting rod to be removed onto the bottom dead center.
 b. Remove the connecting rod cap.
 c. Using a hammer handle or similar tool, push the piston and connecting rod assembly out to the cylinder head side.
 • Before removing the piston and connecting rod assembly, check the connecting rod side clearance. Refer to EM-131, "Connecting Rod Bearing".

12. Remove the connecting rod bearings.
 CAUTION:
 • When removing the connecting rod side bearings, note the installation position. Keep them in the correct order.

13. Remove the piston rings from the piston.
 • Use a piston ring expander.
 CAUTION:
 • When removing the piston rings, be careful not to damage the piston. Do not expand the rings excessively.
 • Be careful to mark the rings if they are to be reused so they are installed in their original position.
 • Before removing the piston rings, check the piston ring side clearance. Refer to EM-109, "Inspection".

14. Remove the piston from the connecting rod as follows.
 a. Using a snap ring pliers, remove the snap ring.
 CAUTION:
 Do not reuse snap rings, always replace with new ones.
 b. Heat the pistons to 60° - 70°C (140° - 158°F).
CYLINDER BLOCK

< DISASSEMBLY AND ASSEMBLY >

c. Push out the piston pin with a suitable tool, with an outer diameter approximately 20 mm (0.8 in).

15. Remove the rear oil seal retainer from the cylinder block.
 • Insert a screwdriver or similar tool between the rear end of the crankshaft counter weight and rear oil seal retainer, and separate the liquid gasket to remove.

 CAUTION:
 Be careful not to damage the mating surface.

 NOTE:
 When replacing the rear oil seal during on-vehicle service, it is necessary to remove the oil pan. Refer to EM-35, "Removal and Installation (Upper Oil Pan)".

16. Remove the baffle plate from the main bearing beam.

17. Loosen the bolts in the numerical order as shown and remove the main bearing beam, bearing caps and crankshaft.
 • Before loosening the main bearing cap bolts, measure the crankshaft side clearance.
 Refer to EM-109, "Inspection".

18. Remove the oil jets and dowel pins.

19. Remove the main bearings and thrust bearings from the cylinder block and main bearing caps.
 • When removing them, note the direction and position. Keep them in the correct order for installation.

ASSEMBLY

1. Blow out the coolant and oil passages and cylinder bore to remove any foreign materials.

 CAUTION:
 Use goggles to protect your eyes.

2. Apply liquid gasket and install each plug into the cylinder block.
 • Use Genuine Silicone RTV Sealant or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants".
3. Install the oil jets.
 • Insert the oil jet dowel pin into the cylinder block dowel pin hole, and tighten the bolts.

4. Install the main bearings and the thrust bearings.
 a. Remove dust, dirt, and oil on the bearing mating surfaces of the cylinder block and the main bearing cap.
 b. Install the thrust bearings to both sides of the No. 3 journal housing on the cylinder block and the main bearing cap.
 • Install the thrust bearings with the oil groove facing the crankshaft arm (outside).
 • Install bearing with a projection on one end on cylinder block and bearing with a projection at center on cap. Align each projection with mating notch.

5. Set the upper main bearings in their proper positions on the cylinder block.
 • Confirm the correct main bearings are used. Refer to EM-109, “Inspection”.

6. Instructions for the re-use of the main bearing cap bolts.
 • A plastic zone tightening method is used for tightening the main bearing cap bolts. Measure d1 and d2 as shown.
 • For d2, select the minimum diameter in the measuring area.
 • If the difference between d1 and d2 exceeds the limit, replace the bolts for assembly.

 Limit (d1 - d2) : 0.11 mm (0.0043 in)
7. After installing the crankshaft, lower main bearings, main bearing caps, main bearing beam, and bearing cap bolts. Tighten the bearing cap bolts in the numerical order as shown.

 a. Make sure that the front marks on the main bearing beam faces the front of the engine.
 b. Prior to tightening all the bearing cap bolts, place the bearing beam in its proper position by shifting the crankshaft in the axial position.
 c. After tightening the bearing cap bolts, make sure the crankshaft turns smoothly.
 d. Lubricate the threads and seat surfaces of the bolts with new engine oil.
 e. Tighten the bolts in two stages:

 CAUTION:
 Measure the tighten angle in stage 2 using Tool. Do not measure visually.

 - **Stage 1**: 32.3 - 38.3 N·m (3.3 - 3.9 kg-m, 24 - 28 ft-lb)
 - **Stage 2**: 90° - 95° degrees clockwise

 Tool number: KV10112100 (BT-8653-A)

8. Measure crankshaft end play.
 • If beyond the limit, replace the bearing with a new one.

 - **Standard**: 0.10 - 0.25 mm (0.0039 - 0.0098 in)
 - **Limit**: 0.30 mm (0.0118 in)
9. Install the rear oil seal retainer using Tool (A).

 Tool number : — (J-47128)

a. Loosen the wing nut (B) on the end of the Tool (A).
b. Insert the arbor (D) into the crankshaft pilot hole until the outer lip (C) of the Tool (A) covers the edge of the crankshaft sealing surface.
c. Tighten the wing nut (B) to secure the Tool (A) to the crankshaft.

d. Apply sealant to rear oil seal retainer as shown. Use Genuine Silicone RTV Sealant, or equivalent. Refer to GI-15, "Recommended Chemical Products and Sealants". Assembly should be completed within 5 minutes after coating.

e. Lubricate the sealing surface of the new rear main seal with new engine oil.
f. Slide the new rear main seal (1) over the Tool (A) and onto the crankshaft.
g. Loosen the wing nut and push the threaded rod into the handle to remove the Tool (A).
h. Tighten the rear oil seal retainer bolts to specification.

10. Install the piston to the connecting rod.

a. Using suitable snap ring pliers, install the snap ring fully into the pin-groove of the piston rear side.
 • Piston front mark (A)
 • Oil hole (B)
 • Connecting rod front mark (C)
 • Cylinder No. (D)

b. Install the piston to the connecting rod.
Heat the piston until the piston pin can be pushed in by hand without excess force [approx. 60° - 70°C (140° to 158°F)]. From the front to the rear, insert the piston pin into the piston and through the connecting rod.

Assemble so that the piston front mark (B) on the crown and the oil hole (C), connecting rod front mark (D) and Cylinder No. (E) on the are positioned as shown.
- Front
- Piston grade number (A)
- Pin grade number (F)

Install the snap ring into the front of the piston pin-groove.
- After installing, check that the connecting rod pivots smoothly on the pin.

CAUTION:
Do not reuse snap rings, always replace with new ones.

Using a piston ring expander, install the piston rings.

CAUTION:
- Be careful not to damage the piston.
- When the piston rings are not replaced, remount the rings in their original positions.
- When replacing the piston rings, those without stamped surface (A) can be mounted either side up.
- Install the second ring with the stamped surface (B) facing upward. If the ring is not stamped it can face in either direction.

<table>
<thead>
<tr>
<th>Top ring (A)</th>
<th>Second ring (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>2A</td>
</tr>
</tbody>
</table>
• Position each ring with the gap as shown, referring to the piston front mark.

12. Install the connecting rod bearings to the connecting rod and the connecting rod cap.
 • When installing the connecting rod bearings, apply engine oil to the bearing surface (crankshaft side). Do not apply oil to the back surface (connecting rod and cap side), but thoroughly clean it.
 • When installing, align the connecting rod bearing protrusion with the notch of the connecting rod to install.
 • Check that the oil holes on the connecting rod and on the corresponding bearing are aligned.

13. Install the piston and connecting rod assembly into the corresponding cylinder.
 • Position the crankshaft pin corresponding to the connecting rod to be installed onto the bottom dead center.
 • Apply engine oil sufficiently to the cylinder bore, piston, and crankshaft pin.
 • Match the cylinder position with the cylinder No. (B) on the connecting rod to install.
 • Install the piston with the piston front mark (A) on the crown facing the front of the engine (→) using a suitable tool.
 - Oil hole (C)
 CAUTION:
 Be careful not to damage the crankshaft pin and cylinder wall, resulting from interference of the connecting rod big end.

14. Install the connecting rod cap.
 • Match the stamped cylinder number marks on the connecting rod with those on the cylinder cap for installation.
 • Install the piston connecting rod assembly and cap so that the front mark on the cap and piston are facing the front of the engine.
 • **Lubricate the threads and seat surfaces with new engine oil.**
15. Check the connecting rod cap bolts before reusing, then install in their original position in the connecting rod. The bolts should screw in smoothly by hand.
 - Measure the outer diameter of the connecting rod cap bolt as shown.

 Outer diameter "d" of the connecting rod bolt
 - **Standard**: 7.90 - 8.00 mm (0.3110 - 0.3150 in)
 - **Limit**: 7.75 mm (0.3051 in)

16. Tighten the connecting rod nuts in two stages using Tool:

 - **Stage 1**: 19 - 21 N·m (1.9 - 2.1 kg-m, 14 - 15 ft-lb)
 - **Stage 2**: 90° - 95° degrees clockwise

 CAUTION:
 Always use either an angle wrench or protractor. Avoid tightening based on visual check alone.

 - **Tool number**: KV10112100 (BT-8653-A)
 - Apply engine oil to the threads and seats of the connecting rod bolts and nuts.
 - After tightening the nuts, make sure that the crankshaft rotates smoothly.
 - Check the connecting rod side clearance. If beyond the limit, replace the connecting rod and/or crankshaft.

 Connecting rod side clearance:
 - **Standard**: 0.20 - 0.35 mm (0.0079 - 0.0138 in)
 - **Limit**: 0.40 mm (0.0157 in)

17. Install the baffle plate to the main bearing beam.

18. Install the knock sensor.
 - Make sure that there is no foreign material on the cylinder block mating surface and the back surface of the knock sensor.
 - Install the knock sensor with the connector facing the rear of the engine.
 - Do not tighten the bolts while holding the connector.
 - Make sure that the knock sensor does not interfere with other parts.

 CAUTION:
 If any impact by dropping occurs to the knock sensor, replace it with new one.

19. Install the pilot converter with it’s chamfer facing crankshaft as shown.
 - Crankshaft side
20. Install the drive plate. Refer to EM-119, "Dowel Pin Alignment".
21. Install the cylinder head. Refer to EM-85, "Removal and Installation".
22. Install the timing chain. Refer to EM-59, "Removal and Installation".
23. Install the oil pan. Refer to EM-35, "Removal and Installation (Upper Oil Pan)".
24. Remove the engine from the stand and install the engine assembly into the vehicle. Refer to EM-95, "Removal and Installation".
25. Assembly of the remaining parts is in the reverse order of disassembly.
26. Fill the engine with the specified oil and coolant. Refer to MA-18, "FOR NORTH AMERICA : Fluids and Lubricants" (United State or Canada) MA-19, "FOR MEXICO : Fluids and Lubricants" (Mexico).

CAUTION:
Wait at least 30 minutes for the sealant to set-up before filling the engine with fluids and running it.

Inspection

PISTON AND PISTON PIN CLEARANCE

Inner Diameter of Piston Pin Hole
- Measure the inner diameter of piston pin hole "dp".

**Standard diameter "dp"
- Grade No. 0 : 21.993 – 21.999 mm (0.8659 – 0.8661 in)
- Grade No. 1 : 21.999 – 22.005 mm (0.8661 – 0.8663 in)

Outer Diameter of Piston Pin
- Measure outer diameter of piston pin "Dp".

**Standard diameter "Dp"
- Grade No. 0 : 21.989 – 21.995 mm (0.8657 – 0.8659 in)
- Grade No. 1 : 21.995 – 22.001 mm (0.8659 – 0.8662 in)

- <=: Front
- Piston Grade No. (A)
- Piston front mark (B)
- Oil hole (C)
- Connecting rod front mark (D)
- Cylinder No. (E)
- Pin Grade No. (F)

Piston and Piston Pin Interference Fit
Standard Interference Fit = "Dp" – "dp"
Standard : 0.002 – 0.010 mm (0.0001 – 0.0004 in)

- If clearance is exceeds specification, replace either or both of piston/piston pin assembly and connecting rod assembly with reference to specification of each part.

PISTON RING SIDE CLEARANCE
- Measure side clearance of piston ring and piston ring groove with feeler gauge.

Standard Side Clearance
Top ring : 0.045 - 0.080 mm (0.0018 - 0.0031 in)
2nd ring : 0.030 - 0.070 mm (0.0012 - 0.0028 in)
Oil ring : 0.045 - 0.125 mm (0.0018 - 0.0049 in)

Maximum Limit
Top ring : 0.11 mm (0.0043 in)
2nd ring : 0.1 mm (0.004 in)
Oil ring : —

- If out of specification, replace piston ring assembly. If clearance exceeds maximum limit with new rings, replace piston.

PISTON RING END GAP
- Insert piston ring until it is in the middle of the cylinder bore and measure the end gap.

Standard
Top ring : 0.23 - 0.28 mm (0.0091 - 0.0110 in)
2nd ring : 0.33 - 0.43 mm (0.0130 - 0.0169 in)
Oil ring : 0.20 - 0.45 mm (0.0079 - 0.0177 in)

Limit:
Top ring : 0.50 mm (0.0197 in)
2nd ring : 0.62 mm (0.0244 in)
Oil ring : 0.80 mm (0.0315 in)

- If out of specification, replace piston ring.

CONNECTING ROD BEND AND TORSION

Bend : Limit 0.15 mm (0.0059 in) per 100 mm (3.94 in) length
Torsion : Limit 0.30 mm (0.0118 in) per 100 mm (3.94 in) length
• If it exceeds the limit, replace connecting rod assembly.

CONNECTING ROD BEARING HOUSING DIAMETER (BIG END)
• Install the connecting rod cap without the connecting rod bearing installed. After tightening the connecting rod nut to the specified torque, measure the connecting rod bearing housing big end inner diameter using an inside micrometer.

Standard: 55.000 - 55.013 mm (2.1654 - 2.1659 in)

CONNECTING ROD BUSHING OIL CLEARANCE (SMALL END)

Inner Diameter of Connecting Rod (Small End)
• Measure inner diameter of piston pin bushing.

Standard

- **Grade No. 0**: 22.000 - 22.006 mm (0.8661 - 0.8664 in)
- **Grade No. 1**: 22.006 - 22.012 mm (0.8664 - 0.8666 in)

Outer Diameter of Piston Pin
• Measure outer diameter of piston pin.

Standard

- **Grade No. 0**: 21.989 - 21.995 mm (0.8657 - 0.8659 in)
- **Grade No. 1**: 21.995 - 22.001 mm (0.8659 - 0.8662 in)

Connecting Rod Bushing Oil Clearance (Small End)
CYLINDER BLOCK

< DISASSEMBLY AND ASSEMBLY >

(Connecting rod small end oil clearance) = (Inner diameter of connecting rod small end) – (Outer diameter of piston pin)

- **Standard**: 0.005 - 0.017 mm (0.0002 - 0.0007 in)
- **Limit**: 0.030 mm (0.0012 in)

- If the measured value exceeds the standard, replace the connecting rod assembly and/or piston and piston pin assembly.
- If replacing the piston and piston pin assembly, use the Table for Selective Fitting for Piston to select the piston corresponding to the applicable bore grade of the cylinder block to be used. Follow the "PISTON-TO-CYLINDER BORE CLEARANCE" procedure.

Factory installed parts grading:
- Front
- Piston Grade No. (A)
- Piston front mark (B)
- Oil hole (C)
- Connecting rod front mark (D)
- Cylinder No. (E)
- Pin Grade No. (F)

Service parts apply only to grade 0.

<table>
<thead>
<tr>
<th>Grade</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Connecting rod small end inner diameter</td>
<td>Connecting rod small end inner diameter</td>
</tr>
<tr>
<td></td>
<td>22.000 - 22.006</td>
<td>22.006 - 22.012</td>
</tr>
<tr>
<td></td>
<td>(0.8661 - 0.8664)</td>
<td>(0.8664 - 0.8666)</td>
</tr>
<tr>
<td></td>
<td>Piston pin outer diameter</td>
<td>Piston pin outer diameter</td>
</tr>
<tr>
<td></td>
<td>(0.8657 - 0.8659)</td>
<td>(0.8659 - 0.8662)</td>
</tr>
<tr>
<td></td>
<td>Piston pin hole diameter</td>
<td>Piston pin hole diameter</td>
</tr>
<tr>
<td></td>
<td>(0.8659 - 0.8661)</td>
<td>(0.8661 - 0.8663)</td>
</tr>
</tbody>
</table>

CYLINDER BLOCK DISTORTION

- Using a scraper, remove any old gasket material on the cylinder block surface, and remove any oil, scale, carbon, or other contamination.

CAUTION:
Be careful not to allow gasket flakes to enter the oil or coolant passages.
- Measure the distortion on the block upper face at different points in six directions.

Distortion limit: 0.10 mm (0.0039 in)

- If out of specification, resurface the cylinder block. The allowable amount of resurfacing is dependent on the amount of any cylinder head resurfacing. The resurfacing limit is [amount of cylinder head resurfacing] + [amount of cylinder head resurfacing] = 0.2 mm (0.008 in).

Cylinder block height: 214.95 - 215.05 mm (8.4626 - 8.4665 in)

INNER DIAMETER OF MAIN BEARING HOUSING

- Install the main bearing caps with the main bearings removed, and tighten the bolts to the specified torque.
< DISASSEMBLY AND ASSEMBLY >

- Using a bore gauge, measure the inner diameter of the main bearing housing "A".

 Standard: 63.993 - 64.017 mm (2.5194 - 2.5203 in)

- If out of the standard, replace the cylinder block and main bearing caps as an assembly.

 NOTE:
 These components cannot be replaced as a single unit, because they were processed together.

PISTON-TO-CYLINDER BORE CLEARANCE

1. Using a bore gauge, measure cylinder bore for wear, out-of-round and taper at (A), (B) and (C). The X axis is in the longitudinal direction of the engine.

 Cylinder bore inner diameter

<table>
<thead>
<tr>
<th>Grade No.</th>
<th>Standard inner diameter</th>
<th>Wear limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>95.500 - 95.510 mm</td>
<td>0.20 mm (0.0079 in)</td>
</tr>
<tr>
<td>No. 2</td>
<td>95.510 - 95.520 mm</td>
<td>0.20 mm (0.0079 in)</td>
</tr>
<tr>
<td>No. 3</td>
<td>95.520 - 95.530 mm</td>
<td>0.20 mm (0.0079 in)</td>
</tr>
</tbody>
</table>

 If it exceeds the limit, rebore all cylinders. Replace cylinder block if necessary.

 - **Out-of-round (Difference between X and Y)**: limit 0.015 mm (0.0006 in)
 - **Taper (Difference between A and C)**: limit 0.010 mm (0.0004 in)

2. Check for scratches and seizure. If seizure is found, hone it.

 - If both cylinder block and piston are replaced with new ones, select piston of the same grade number punched on cylinder block rear position. These numbers are punched in either Arabic or Roman numerals.
3. Measure piston skirt diameter.

 Piston diameter “A” : Refer to EM-127, "Cylinder Block".
 Measuring point “a” : 38.0 mm (1.496 in) (Distance from the top)

4. Check that piston-to-bore clearance is within specification.

 Piston-to-bore clearance at “B” : 0.010 - 0.030 mm (0.0004 - 0.0012 in)
 • The piston-to-bore clearance is measured at the "B" level in the cylinder as shown.

5. Cylinder bore size is determined by adding piston-to-bore clearance to piston diameter “A”.

 Rebored size calculation : \(D = A + B - C \)
 where,
 \(D \) : Bored diameter
 \(A \) : Piston diameter as measured
 \(B \) : Piston-to-bore clearance
 \(C \) : Honing allowance 0.02 mm (0.0008 in)

6. Install main bearing caps, and tighten to the specified torque. Otherwise, cylinder bores may be distorted after boring.

7. Cut cylinder bores.
 • When any cylinder needs boring, all other cylinders must also be bored.
 • Do not cut too much out of cylinder bore at a time. Cut only 0.05 mm (0.0020 in) or so in diameter at a time.

8. Hone cylinders to obtain specified piston-to-bore clearance.

 • Measurement should be done after cylinder bore cools down.

CRANKSHAFT

1. Check the crankshaft main and pin journals for scoring, wear, or cracks.

2. Measure the journals for taper and out-of-round.

 Standard
 Out-of-round (X - Y) : 0.002 mm (0.0001 in)
 Taper (A - B) : 0.002 mm (0.0001 in)
3. Measure crankshaft runout.
 a. Place a V-block on a precise flat table to support the journals on the both ends of the crankshaft.
 b. Place a dial gauge straight up on the No. 3 journal.
 c. While rotating the crankshaft, read the movement of the pointer on the dial gauge.

 Runout limit (total indicator reading) : 0.10 mm (0.0039 in)

BEARING CLEARANCE

- Use either of the following two methods, however method "A" gives more reliable results and so is the preferred method.

Method A (Using Bore Gauge and Micrometer)

Main Bearing

1. Set the main bearings in their proper positions on the cylinder block and the main bearing cap.
2. Install the main bearing caps and bearing beam to the cylinder block. Tighten all bolts in the numerical order as specified. Refer to EM-99, "Disassembly and Assembly".
3. Measure the inner diameters "A" of each main bearing as shown.
4. Measure the outer diameters "Dm" of each crankshaft main journal as shown.
5. Calculate the main bearing clearance.

 Main bearing clearance = "A" - "Dm"

 Standard : 0.035 - 0.045 mm (0.0014 - 0.0018 in)
 Limit : 0.065 mm (0.0026 in)

 - If it exceeds the limit, replace the bearing.
 - If clearance cannot be adjusted using any standard bearing grade, grind crankshaft journal and use an undersized bearing.
When grinding the crankshaft journal, confirm that the "L" dimension in the fillet role is more than the specified limit.

"L" : 0.10 mm (0.0039 in)

6. If the crankshaft or the cylinder block is replaced with a new one, select thickness of the main bearings as follows:

a. The grade number of each cylinder block main journal is punched on the respective cylinder block. These numbers are punched in either Arabic or Roman numerals. If measured diameter is out of the grade punched, decide suitable grade from available main bearings.

b. The grade number of each crankshaft main journal is punched on the crankshaft end. These numbers are punched in either Arabic or Roman numerals. If measured diameter is out of grade punched, decide the suitable grade from available main bearings.
c. Select the main bearing suitable thickness according to the following table:

<table>
<thead>
<tr>
<th>Mark</th>
<th>Axle diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>59.975 - 59.974 (2.3612 - 2.3612)</td>
</tr>
<tr>
<td>B</td>
<td>59.974 - 59.973 (2.3612 - 2.3611)</td>
</tr>
<tr>
<td>C</td>
<td>59.973 - 59.972 (2.3611 - 2.3611)</td>
</tr>
<tr>
<td>D</td>
<td>59.972 - 59.971 (2.3611 - 2.3611)</td>
</tr>
<tr>
<td>E</td>
<td>59.971 - 59.970 (2.3611 - 2.3610)</td>
</tr>
<tr>
<td>F</td>
<td>59.970 - 59.969 (2.3610 - 2.3610)</td>
</tr>
<tr>
<td>G</td>
<td>59.969 - 59.968 (2.3610 - 2.3609)</td>
</tr>
<tr>
<td>H</td>
<td>59.968 - 59.967 (2.3609 - 2.3609)</td>
</tr>
<tr>
<td>J</td>
<td>59.967 - 59.966 (2.3609 - 2.3609)</td>
</tr>
<tr>
<td>K</td>
<td>59.966 - 59.965 (2.3609 - 2.3608)</td>
</tr>
<tr>
<td>L</td>
<td>59.965 - 59.964 (2.3608 - 2.3608)</td>
</tr>
<tr>
<td>M</td>
<td>59.964 - 59.963 (2.3608 - 2.3607)</td>
</tr>
<tr>
<td>N</td>
<td>59.963 - 59.962 (2.3607 - 2.3607)</td>
</tr>
<tr>
<td>P</td>
<td>59.962 - 59.961 (2.3607 - 2.3607)</td>
</tr>
<tr>
<td>R</td>
<td>59.961 - 59.960 (2.3606 - 2.3606)</td>
</tr>
<tr>
<td>S</td>
<td>59.960 - 59.959 (2.3606 - 2.3605)</td>
</tr>
<tr>
<td>T</td>
<td>59.959 - 59.958 (2.3605 - 2.3605)</td>
</tr>
<tr>
<td>U</td>
<td>59.958 - 59.957 (2.3605 - 2.3605)</td>
</tr>
<tr>
<td>V</td>
<td>59.957 - 59.956 (2.3605 - 2.3605)</td>
</tr>
<tr>
<td>W</td>
<td>59.956 - 59.955 (2.3605 - 2.3604)</td>
</tr>
<tr>
<td>X</td>
<td>59.955 - 59.954 (2.3604 - 2.3604)</td>
</tr>
<tr>
<td>Y</td>
<td>59.954 - 59.953 (2.3604 - 2.3603)</td>
</tr>
<tr>
<td>4</td>
<td>59.953 - 59.952 (2.3603 - 2.3603)</td>
</tr>
<tr>
<td>7</td>
<td>59.952 - 59.951 (2.3603 - 2.3603)</td>
</tr>
</tbody>
</table>

Connecting Rod Bearing (Big End)

1. Install the connecting rod bearing to the connecting rod and cap.
2. Install the connecting rod cap to the connecting rod. Tighten to specification. Refer to EM-99, "Disassembly and Assembly".
3. Measure the inner diameter "C" of each connecting rod (big end) as shown.
4. Measure the outer diameter "Dp" of each crankshaft pin journal.
5. Calculate the connecting rod bearing clearance.
 \[\text{Connecting rod bearing clearance} = C - Dp \]

 - **Standard**: 0.020 - 0.045 mm (0.0008 - 0.0018 in)
 - **Limit**: 0.070 mm (0.0028 in)

6. If the calculated clearance exceeds the specified limit, replace the bearings.
7. If the clearance cannot be adjusted within the standard of any bearing, grind the crankshaft journal and use undersized bearings.
8. If the crankshaft is replaced with a new one, select the connecting rod bearings according to the following table:

 Connecting Rod Bearing Grade Number (Identification Color)

<table>
<thead>
<tr>
<th>Crankshaft pin journal grade number</th>
<th>Connecting rod bearing grade number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 (black)</td>
</tr>
<tr>
<td>1</td>
<td>1 (brown)</td>
</tr>
<tr>
<td>2</td>
<td>2 (green)</td>
</tr>
</tbody>
</table>

 These numbers are punched in either Arabic or Roman numerals.

Method B (Using Plastigage)

- Remove oil and dust on the crankshaft pin and the surfaces of each bearing completely.
- Cut a Plastigage slightly shorter than the bearing width, and place it in crankshaft axial direction, avoiding oil holes.
- Install the connecting rod bearings to the connecting rod cap, and tighten the connecting rod nuts to the specified torque.

CAUTION:

Never rotate the crankshaft.

- Remove the connecting rod cap and bearings, and using the scale on the Plastigage bag, measure the Plastigage width.

NOTE:

The procedure when the measured value exceeds the repair limit is same as that described in "Method A (Using Bore Gauge and Micrometer)."

DRIVE PLATE RUNOUT

Runout (Total Indicator Reading):

- **Drive plate**
 - torque converter surface: less than 0.35 mm (.0138 in)
 - Ring gear: less than 0.5 mm (.0197 in)

CAUTION:

- The signal plate is built into the drive assembly. Be careful not to damage the signal plate, particularly the teeth.
- Check the drive plate and signal plate for deformation or cracks.
- Keep any magnetized objects away from the signal plate, particularly the teeth.
OIL JET
• Check nozzle for deformation and damage.
• Blow compressed air from nozzle, and check for clogs.
• If it is not satisfied, replace oil jet.

OIL JET RELIEF VALVE
• Using a clean plastic stick, press check valve in oil jet relief valve.
 • Make sure that valve moves smoothly with proper reaction force.
• If it is not satisfied, replace oil jet relief valve.

Dowel Pin Alignment

REMOVAL
1. Use suitable tool to lock the drive plate and match mark (A) the drive plate before removing the bolts.
 CAUTION:
 Do not damage the ring gear teeth, or the signal plate teeth behind the ring gear.

2. Remove drive plate.
 • Loosen the drive plate in a diagonal order.
 CAUTION:
 • Never place drive plate with signal plate facing down.
 • When handling the signal plate, take care not to damage or scratch it.
 • Handle the signal plate in a manner that prevents it from becoming magnetized.

INSTALLATION
Installation is in the reverse order of removal.
• When installing the drive plate to the crankshaft, use the match mark (A) as shown to correctly align the crankshaft side dowel pin to the drive plate side dowel pin hole.

• Install the drive plate and the reinforcement plate in the direction as shown.

• Tighten the drive plate bolts in a diagonal pattern in two steps. Refer to EM-99, "Disassembly and Assembly".
 - Use a suitable tool to lock the drive plate.
GENERAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Cylinder arrangement</th>
<th>V-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement cm³ (cu in)</td>
<td>3,498 (213.45)</td>
</tr>
<tr>
<td>Bore and stroke mm (in)</td>
<td>95.5 x 81.4 (3.760 x 3.205)</td>
</tr>
<tr>
<td>Valve arrangement</td>
<td>DOHC</td>
</tr>
<tr>
<td>Firing order</td>
<td>1-2-3-4-5-6</td>
</tr>
<tr>
<td>Number of piston rings</td>
<td>Compression: 2, Oil: 1</td>
</tr>
<tr>
<td>Number of main bearings</td>
<td>4</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>10.6:1</td>
</tr>
<tr>
<td>Compression pressure kPa (kg/cm², psi)/300 rpm</td>
<td>Standard: 1,275 (13.0, 185), Minimum: 981 (10.0, 142)</td>
</tr>
<tr>
<td>Differential limit between cylinders</td>
<td>98 (1.0, 14)</td>
</tr>
</tbody>
</table>

Valve timing
(Valve timing control - "OFF")

Unit: degree

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>240</td>
<td>-10</td>
<td>70</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

Drive Belt

DRIVE BELT

Tension of drive belt: Belt tension is not necessary, as it is automatically adjusted by drive belt auto-tensioner.
Spark Plug

Make
DENSO

Standard type
FXE22HR11

Gap
<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1 (0.043)</td>
<td>1.4 (0.055)</td>
</tr>
</tbody>
</table>

*: Always check with the Parts Department for the latest parts information

Intake Manifold

Intake manifold collector
<table>
<thead>
<tr>
<th>Item</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface distortion</td>
<td>0.1 (0.004)</td>
</tr>
</tbody>
</table>

Exhaust Manifold

Exhaust manifold
<table>
<thead>
<tr>
<th>Item</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface distortion</td>
<td>0.3 (0.012)</td>
</tr>
</tbody>
</table>

Camshaft

Camshaft journal oil clearance
| No. 1 | Standard 0.045 - 0.086 (0.0018 - 0.0034) | Limit 0.15 (0.0059) |
| No. 2, 3, 4 | 0.035 - 0.076 (0.0014 - 0.0030) |

Camshaft bracket inner diameter
| No. 1 | 26.000 - 26.021 (1.0236 - 1.0244) |
| No. 2, 3, 4 | 23.500 - 23.521 (0.9252 - 0.9260) |

Camshaft journal diameter
| No. 1 | 25.935 - 25.955 (1.0211 - 1.0218) |
| No. 2, 3, 4 | 23.445 - 23.465 (0.9230 - 0.9238) |

Camshaft end play
| Intake | Standard 0.115 - 0.188 (0.0045 - 0.0074) | Limit 0.24 (0.0094) |
| Exhaust | 45.475 - 45.665 (1.7904 - 1.7978) |

Camshaft cam height “A”
| Intake | Standard 45.475 - 45.665 (1.7904 - 1.7978) |
| Exhaust | 45.485 - 45.675 (1.7907 - 1.7982) |

Camshaft runout [TIR*2]
| Intake | Less than 0.02 (0.0008) |
| Exhaust | 0.05 (0.0020) |

Camshaft sprocket runout [TIR*2]
| Intake | Less than 0.15 (0.0059) |
| Exhaust | — |
SERVICE DATA AND SPECIFICATIONS (SDS)

Difference in level between front end faces of No. 1 camshaft bracket and cylinder head

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.14 (-0.0055)</td>
<td></td>
</tr>
</tbody>
</table>

VALVE LIFTER

Unit: mm (in)

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve lifter outer diameter</td>
<td>33.977 - 33.987 (1.3377 - 1.3381)</td>
</tr>
<tr>
<td>Valve lifter hole diameter</td>
<td>34.000 - 34.016 (1.3386 - 1.3392)</td>
</tr>
<tr>
<td>Valve lifter clearance</td>
<td>0.013 - 0.039 (0.0005 - 0.0015)</td>
</tr>
</tbody>
</table>

VALVE CLEARANCE

Unit: mm (in)

<table>
<thead>
<tr>
<th>Items</th>
<th>Cold</th>
<th>Hot* (reference data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>0.26 - 0.34 (0.010 - 0.013)</td>
<td>0.304 - 0.416 (0.012 - 0.016)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.29 - 0.37 (0.011 - 0.015)</td>
<td>0.308 - 0.432 (0.012 - 0.017)</td>
</tr>
</tbody>
</table>

*Approximately 80°C (176°F)

AVAILABLE VALVE LIFTER

Unit: mm (in)

<table>
<thead>
<tr>
<th>Identification (Stamped) mark*</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>788U</td>
<td>7.88 (0.3102)</td>
</tr>
<tr>
<td>790U</td>
<td>7.90 (0.3110)</td>
</tr>
<tr>
<td>792U</td>
<td>7.92 (0.3118)</td>
</tr>
<tr>
<td>794U</td>
<td>7.94 (0.3126)</td>
</tr>
<tr>
<td>796U</td>
<td>7.96 (0.3134)</td>
</tr>
<tr>
<td>798U</td>
<td>7.98 (0.3142)</td>
</tr>
<tr>
<td>800U</td>
<td>8.00 (0.3150)</td>
</tr>
<tr>
<td>802U</td>
<td>8.02 (0.3157)</td>
</tr>
<tr>
<td>804U</td>
<td>8.04 (0.3165)</td>
</tr>
<tr>
<td>806U</td>
<td>8.06 (0.3173)</td>
</tr>
<tr>
<td>808U</td>
<td>8.08 (0.3181)</td>
</tr>
<tr>
<td>810U</td>
<td>8.10 (0.3189)</td>
</tr>
<tr>
<td>812U</td>
<td>8.12 (0.3197)</td>
</tr>
<tr>
<td>814U</td>
<td>8.14 (0.3205)</td>
</tr>
<tr>
<td>816U</td>
<td>8.16 (0.3213)</td>
</tr>
<tr>
<td>818U</td>
<td>8.18 (0.3220)</td>
</tr>
</tbody>
</table>

*1: Cam wear limit
*2: Total indicator reading
Cylinder Head

CYLINDER HEAD

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head surface distortion</td>
<td>Less than 0.03 (0.0012)</td>
<td>0.1 (0.004)</td>
</tr>
<tr>
<td>Normal cylinder head height "H"</td>
<td>126.3 - 126.5 (4.97 - 4.98)</td>
<td>—</td>
</tr>
<tr>
<td>Spark plug tube installation height</td>
<td>37.7 - 38.7 (1.484 - 1.529)</td>
<td>—</td>
</tr>
</tbody>
</table>

VALVE DIMENSIONS

* Always check with the Parts Department for the latest parts information

Revision: November 2009

2010 Maxima
Valve head diameter "D"

<table>
<thead>
<tr>
<th></th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>36.6 - 36.9 (1.441 - 1.453)</td>
<td>30.2 - 30.5 (1.189 - 1.201)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>97.13 (3.8240)</td>
<td>94.67 (3.7272)</td>
</tr>
</tbody>
</table>

Valve length "L"

<table>
<thead>
<tr>
<th></th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>97.13 (3.8240)</td>
<td>94.67 (3.7272)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>5.965 - 5.980 (0.2348 - 0.2354)</td>
<td>5.955 - 5.970 (0.2344 - 0.2350)</td>
</tr>
</tbody>
</table>

Valve stem diameter "d"

<table>
<thead>
<tr>
<th></th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>5.965 - 5.980 (0.2348 - 0.2354)</td>
<td>5.955 - 5.970 (0.2344 - 0.2350)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>5.955 - 5.970 (0.2344 - 0.2350)</td>
<td>More than 0.5 (0.020)</td>
</tr>
</tbody>
</table>

Valve seat angle "α"

Intake: 45°15' - 45°45'

Valve stem end surface grinding limit

Less than 0.2 (0.008)

Valve oil seal installation height

Standard: 14.3 - 14.9 (0.563 - 0.587)

Valve guide

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
<th>Oversize (Service) [0.2 (0.008)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer diameter</td>
<td>10.023 - 10.034 (0.3946 - 0.3950)</td>
<td>10.223 - 10.234 (0.4025 - 0.4029)</td>
</tr>
<tr>
<td>Inner diameter (Finished size)</td>
<td>6.000 - 6.018 (0.2362 - 0.2369)</td>
<td></td>
</tr>
<tr>
<td>Cylinder head valve guide hole diameter</td>
<td>9.975 - 9.996 (0.3927 - 0.3935)</td>
<td>10.175 - 10.196 (0.4006 - 0.4014)</td>
</tr>
<tr>
<td>Interference fit of valve guide</td>
<td>0.027 - 0.059 (0.0011 - 0.0023)</td>
<td></td>
</tr>
</tbody>
</table>

Revision: November 2009
SERVICE DATA AND SPECIFICATIONS (SDS)

VALVE SEAT

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
<th>Oversize (Service) [0.5 (0.02)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve guide clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.020 - 0.053 (0.0008 - 0.0021)</td>
<td>0.08 (0.0031)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.040 - 0.073 (0.0016 - 0.0029)</td>
<td>0.01 (0.004)</td>
</tr>
<tr>
<td>Valve deflection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>—</td>
<td>0.24 (0.0094)</td>
</tr>
<tr>
<td>Exhaust</td>
<td>—</td>
<td>0.28 (0.0110)</td>
</tr>
<tr>
<td>Projection length "L"*</td>
<td></td>
<td>12.6 - 12.8 (0.496 - 0.504)</td>
</tr>
</tbody>
</table>

Cylinder head seat recess diameter “D”

- **Intake (A)**: 38.000 - 38.016 (1.4961 - 1.4967)
- **Intake (B)**: 38.500 - 38.516 (1.5157 - 1.5164)
- **Exhaust (A)**: 31.600 - 31.616 (1.2441 - 1.2447)
- **Exhaust (B)**: 32.100 - 32.116 (1.2638 - 1.2644)

Valve seat outer diameter

- **Intake**: 38.097 - 38.113 (1.4999 - 1.5005)
- **Intake**: 38.597 - 38.613 (1.5196 - 1.5202)
- **Exhaust**: 31.680 - 31.696 (1.2472 - 1.2479)
- **Exhaust**: 32.180 - 32.196 (1.2669 - 1.2676)

Valve seat interference fit

- **Intake**: 0.081 - 0.113 (0.0032 - 0.0044)
- **Exhaust**: 0.064 - 0.096 (0.0025 - 0.0038)

Height “h”

- **Intake (A)**: 5.9 - 6.0 (0.232 - 0.236)
- **Intake (B)**: 5.0 - 5.1 (0.197 - 0.201)
- **Exhaust (A)**: 5.9 - 6.0 (0.232 - 0.236)
- **Exhaust (B)**: 4.9 - 5.0 (0.193 - 0.197)

Contacting width “W”*

- **Intake (A)**: 1.18 - 1.22 (0.0465 - 0.0480)
- **Exhaust (A)**: 1.38 - 1.42 (0.0543 - 0.0559)

Cylindr head seat recess depth (H)

- **Intake**: 6.0 (0.236)

Depth “L”

- **Intake (A)**: 41.16 - 41.76 (1.6205 - 1.6441)
- **Exhaust (A)**: 41.09 - 41.69 (1.6177 - 1.6413)

*:Machining data

Revision: November 2009

EM-126

2010 Maxima
VALVE SPRING

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free height</td>
<td>47.07 mm (1.8531 in)</td>
</tr>
<tr>
<td>Installation height</td>
<td>37.00 mm (1.4567 in)</td>
</tr>
<tr>
<td>Installation load</td>
<td>166 - 188 N (16.9 - 19.2 kg, 37 - 42 lb)</td>
</tr>
<tr>
<td>Height during valve open</td>
<td>27.20 mm (1.0709 in)</td>
</tr>
<tr>
<td>Load with valve open</td>
<td>373 - 421 N (38.0 - 42.9 kg, 84 - 95 lb)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Items</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squareness</td>
<td>2.0 (0.079)</td>
</tr>
</tbody>
</table>

CYLINDER BLOCK

CYLINDER BLOCK

Surface distortion

<table>
<thead>
<tr>
<th>Standard</th>
<th>Less than 0.03 (0.0012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit</td>
<td>0.10 (0.0039)</td>
</tr>
</tbody>
</table>

Main bearing housing inner diameter

<table>
<thead>
<tr>
<th>Standard</th>
<th>Grade No. 1</th>
<th>Grade No. 2</th>
<th>Grade No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95.500 - 95.510 (3.7598 - 3.7602)</td>
<td>95.510 - 95.520 (3.7602 - 3.7606)</td>
<td>95.520 - 95.530 (3.7606 - 3.7610)</td>
</tr>
<tr>
<td>Limit</td>
<td>0.20 (0.0079)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cylinder bore inner diameter

<table>
<thead>
<tr>
<th>Standard</th>
<th>Wear limit</th>
<th>Out-of-round</th>
<th>Taper (Difference between A and C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade No. 1</td>
<td>95.500 - 95.510 (3.7598 - 3.7602)</td>
<td>0.20 (0.0079)</td>
<td>0.015 (0.0006)</td>
</tr>
<tr>
<td>Grade No. 2</td>
<td>95.510 - 95.520 (3.7602 - 3.7606)</td>
<td></td>
<td>0.015 (0.0006)</td>
</tr>
<tr>
<td>Grade No. 3</td>
<td>95.520 - 95.530 (3.7606 - 3.7610)</td>
<td></td>
<td>0.015 (0.0006)</td>
</tr>
<tr>
<td>Limit</td>
<td>0.10 (0.0039)</td>
<td>0.03 (0.0012)</td>
<td>0.015 (0.0006)</td>
</tr>
</tbody>
</table>
SERVICE DATA AND SPECIFICATIONS (SDS)

AVAILABLE PISTON

Unit: mm (in)

<table>
<thead>
<tr>
<th>Items</th>
<th>Grade*</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston skirt diameter “A”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade No. 1</td>
<td></td>
<td>95.480 - 95.490 (3.7590 - 3.7594)</td>
</tr>
<tr>
<td>Grade No. 2</td>
<td></td>
<td>95.490 - 95.500 (3.7594 - 3.7598)</td>
</tr>
<tr>
<td>Grade No. 3</td>
<td></td>
<td>95.500 - 95.510 (3.7598 - 3.7602)</td>
</tr>
<tr>
<td>“a” dimension</td>
<td></td>
<td>38.0 (1.496)</td>
</tr>
<tr>
<td>Piston pin hole diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade No. 0</td>
<td></td>
<td>21.993 - 21.999 (0.8659 - 0.8661)</td>
</tr>
<tr>
<td>Grade No. 1</td>
<td></td>
<td>21.999 - 22.005 (0.8661 - 0.8663)</td>
</tr>
<tr>
<td>Piston to cylinder bore clearance</td>
<td></td>
<td>0.010 - 0.030 (0.0004 - 0.0012)</td>
</tr>
</tbody>
</table>

*: Always check with the Parts Department for the latest parts information

PISTON RING

Unit: mm (in)

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.045 - 0.080 (0.0018 - 0.0031)</td>
<td>0.11 (0.0043)</td>
</tr>
<tr>
<td>2nd</td>
<td>0.030 - 0.070 (0.0012 - 0.0028)</td>
<td>0.1 (0.004)</td>
</tr>
<tr>
<td>Oil ring</td>
<td>0.065 - 0.125 (0.0018 - 0.0049)</td>
<td>—</td>
</tr>
</tbody>
</table>

Main bearing housing inner diameter grade (Without bearing)

<table>
<thead>
<tr>
<th>Grade No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Difference in inner diameter between cylinders</th>
<th>Standard</th>
<th>Less than 0.03 (0.0012)</th>
</tr>
</thead>
</table>

Revision: November 2009

EM-128

2010 Maxima
SERVICE DATA AND SPECIFICATIONS (SDS)

PISTON PIN

<table>
<thead>
<tr>
<th>Items</th>
<th>Grade*</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston pin outer diameter</td>
<td>Grade No. 0</td>
<td>21.989 - 21.995 (0.8657 - 0.8659)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Grade No. 1</td>
<td>21.995 - 22.001 (0.8659 - 0.8662)</td>
<td>—</td>
</tr>
<tr>
<td>Piston to piston pin oil clearance</td>
<td></td>
<td>0.002 - 0.010 (0.0001 - 0.0004)</td>
<td>—</td>
</tr>
<tr>
<td>Connecting rod bushing oil clearance</td>
<td></td>
<td>0.005 - 0.017 (0.0002 - 0.0007)</td>
<td>0.030 (0.0012)</td>
</tr>
</tbody>
</table>

*: Always check with the Parts Department for the latest parts information

CONNECTING ROD

<table>
<thead>
<tr>
<th>Items</th>
<th>Grade¹</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center distance</td>
<td></td>
<td>144.15 - 144.25 (5.68 - 5.68)</td>
<td>—</td>
</tr>
<tr>
<td>Bend [per 100 (3.94)]</td>
<td></td>
<td>—</td>
<td>0.15 (0.0059)</td>
</tr>
<tr>
<td>Torsion [per 100 (3.94)]</td>
<td></td>
<td>—</td>
<td>0.30 (0.0118)</td>
</tr>
<tr>
<td>Connecting rod small end inner diameter</td>
<td>Grade No. 0</td>
<td>22.000 - 22.006 (0.8661 - 0.8664)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Grade No. 1</td>
<td>22.006 - 22.012 (0.8664 - 0.8666)</td>
<td>—</td>
</tr>
<tr>
<td>Connecting rod big end diameter (Without bearing)</td>
<td>55.000 - 55.013 (2.1654 - 2.1659)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Side clearance</td>
<td></td>
<td>0.20 - 0.35 (0.0079 - 0.0138)</td>
<td>0.40 (0.0157)</td>
</tr>
</tbody>
</table>

¹: Always check with the Parts Department for the latest parts information

²: After installing in connecting rod

CRANKSHAFT

Taper: (Difference between "A" and "B")
Out-of-round: (Difference between "X" and "Y")
Main journal diameter. “Dm” grade

<table>
<thead>
<tr>
<th>Grade No.</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>59.975 - 59.974 (2.3612 - 2.3612)</td>
</tr>
<tr>
<td>B</td>
<td>59.974 - 59.973 (2.3612 - 2.3611)</td>
</tr>
<tr>
<td>C</td>
<td>59.973 - 59.972 (2.3611 - 2.3611)</td>
</tr>
<tr>
<td>D</td>
<td>59.972 - 59.971 (2.3611 - 2.3611)</td>
</tr>
<tr>
<td>E</td>
<td>59.971 - 59.970 (2.3611 - 2.3610)</td>
</tr>
<tr>
<td>F</td>
<td>59.970 - 59.969 (2.3610 - 2.3610)</td>
</tr>
<tr>
<td>G</td>
<td>59.969 - 59.968 (2.3610 - 2.3609)</td>
</tr>
<tr>
<td>H</td>
<td>59.968 - 59.967 (2.3609 - 2.3609)</td>
</tr>
<tr>
<td>J</td>
<td>59.967 - 59.966 (2.3609 - 2.3609)</td>
</tr>
<tr>
<td>K</td>
<td>59.966 - 59.965 (2.3609 - 2.3608)</td>
</tr>
<tr>
<td>L</td>
<td>59.965 - 59.964 (2.3608 - 2.3608)</td>
</tr>
<tr>
<td>M</td>
<td>59.964 - 59.963 (2.3608 - 2.3607)</td>
</tr>
<tr>
<td>N</td>
<td>59.963 - 59.962 (2.3607 - 2.3607)</td>
</tr>
<tr>
<td>P</td>
<td>59.962 - 59.961 (2.3607 - 2.3607)</td>
</tr>
<tr>
<td>R</td>
<td>59.961 - 59.960 (2.3607 - 2.3606)</td>
</tr>
<tr>
<td>S</td>
<td>59.960 - 59.959 (2.3606 - 2.3606)</td>
</tr>
<tr>
<td>T</td>
<td>59.959 - 59.958 (2.3606 - 2.3605)</td>
</tr>
<tr>
<td>U</td>
<td>59.958 - 59.957 (2.3605 - 2.3605)</td>
</tr>
<tr>
<td>V</td>
<td>59.957 - 59.956 (2.3605 - 2.3605)</td>
</tr>
<tr>
<td>W</td>
<td>59.956 - 59.955 (2.3605 - 2.3604)</td>
</tr>
<tr>
<td>X</td>
<td>59.955 - 59.954 (2.3604 - 2.3604)</td>
</tr>
<tr>
<td>Y</td>
<td>59.954 - 59.953 (2.3604 - 2.3603)</td>
</tr>
<tr>
<td>4</td>
<td>59.953 - 59.952 (2.3603 - 2.3603)</td>
</tr>
<tr>
<td>7</td>
<td>59.952 - 59.951 (2.3603 - 2.3603)</td>
</tr>
</tbody>
</table>

Pin journal diameter. “Dp” grade

<table>
<thead>
<tr>
<th>Grade No.</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51.968 - 51.974 (2.0460 - 2.0462)</td>
</tr>
<tr>
<td>1</td>
<td>51.962 - 51.968 (2.0457 - 2.0460)</td>
</tr>
<tr>
<td>2</td>
<td>51.956 - 51.962 (2.0445 - 2.0457)</td>
</tr>
</tbody>
</table>

Center distance “r”

| Limit | 40.66 - 40.74 (1.6008 - 1.6039) |

Taper (Difference between “A” and “B”)

| Limit | Less than 0.002 (0.0001) |

Out-of-round (Difference between “X” and “Y”)

| Limit | Less than 0.002 (0.0001) |

Crankshaft runout [TIR2]

| Limit | 0.10 (0.0039) |

Crankshaft end play

| Limit | 0.10 - 0.25 (0.0039 - 0.0098) |

Fillet role of crankshaft journal

| Limit | More than 0.10 (0.0039) |

1: Always check with the Parts Department for the latest parts information

2: Total indicator reading

Main Bearing

MAIN BEARING

Unit: mm (in)
MAIN BEARING OIL CLEARANCE

<table>
<thead>
<tr>
<th>Items</th>
<th>Thickness</th>
<th>Main journal diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 (0.0098)</td>
<td>2.132 - 2.140 (0.0839 - 0.0843)</td>
<td>Grind so that bearing clearance is the specified value.</td>
</tr>
</tbody>
</table>

MAIN BEARING OIL CLEARANCE

<table>
<thead>
<tr>
<th>Items</th>
<th>Thickness</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main bearing oil clearance</td>
<td>0.035 - 0.045 (0.0014 - 0.0018)*</td>
<td>0.065 (0.0026)</td>
</tr>
</tbody>
</table>

*: Actual clearance

CONNECTING ROD BEARING

CONNECTING ROD BEARING

<table>
<thead>
<tr>
<th>Grade number*</th>
<th>Thickness</th>
<th>Identification color (mark)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.500 - 1.503 (0.0591 - 0.0592)</td>
<td>Black</td>
</tr>
<tr>
<td>1</td>
<td>1.503 - 1.506 (0.0592 - 0.0593)</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>1.506 - 1.509 (0.0593 - 0.0594)</td>
<td>Green</td>
</tr>
</tbody>
</table>

*: Always check with the Parts Department for the latest parts information

UNDERSIZE

<table>
<thead>
<tr>
<th>Items</th>
<th>Thickness</th>
<th>Crank pin journal diameter “Dp”</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 (0.0098)</td>
<td>1.626 - 1.634 (0.0640 - 0.0643)</td>
<td>Grind so that bearing clearance is the specified value.</td>
</tr>
</tbody>
</table>
CONNECTING ROD BEARING OIL CLEARANCE

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting rod bearing oil clearance</td>
<td>0.020 - 0.045 (0.0008 - 0.0018)*</td>
<td>0.070 (0.0028)</td>
</tr>
</tbody>
</table>

*: Actual clearance

Drive Plate

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive plate runout [TIR]* - on torque converter mounting surface</td>
<td>Less than 0.35 (0.0138)</td>
<td></td>
</tr>
<tr>
<td>Drive plate runout [TIR]* - on ring gear</td>
<td></td>
<td>0.5 (0.0197)</td>
</tr>
</tbody>
</table>

*: Total indicator reading